×

Extensions of measures and the von Neumann selection theorem. (English) Zbl 0262.28002


MSC:

28A10 Real- or complex-valued set functions
Full Text: DOI

References:

[1] Paul R. Halmos, Measure Theory, D. Van Nostrand Company, Inc., New York, N. Y., 1950. · Zbl 0040.16802
[2] Felix Hausdorff, Set theory, Second edition. Translated from the German by John R. Aumann et al, Chelsea Publishing Co., New York, 1962. · Zbl 0012.20302
[3] K. Kuratowski, Topology. Vol. I, New edition, revised and augmented. Translated from the French by J. Jaworowski, Academic Press, New York-London; Państwowe Wydawnictwo Naukowe, Warsaw, 1966. · Zbl 0158.40901
[4] N. Lusin, Leçons sur les ensembles analytiques, Hermann, Paris, 1930. · JFM 56.0085.01
[5] Paul-A. Meyer, Probability and potentials, Blaisdell Publishing Co. Ginn and Co., Waltham, Mass.-Toronto, Ont.-London, 1966. · Zbl 0138.10401
[6] John von Neumann, On rings of operators. Reduction theory, Ann. of Math. (2) 50 (1949), 401 – 485. · Zbl 0034.06102 · doi:10.2307/1969463
[7] H. L. Royden, Real analysis, The Macmillan Co., New York; Collier-Macmillan Ltd., London, 1963. · Zbl 0121.05501
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.