×

zbMATH — the first resource for mathematics

The Radon-Nikodym theorem for von Neumann algebras. (English) Zbl 0262.46063

MSC:
46L10 General theory of von Neumann algebras
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Combes, F., Poids sur uneC *-algèbre.J. Math. pures et appl., 47 (1968), 57–100. · Zbl 0165.15401
[2] – Poids associè à une algèbre hilbertienne à gauche.Compositio Math., 23 (1971), 49–77. · Zbl 0208.38201
[3] – Poids et espérances conditionnelle dans les algèbres de von Neumann.Bull. Soc. Math. France, 99 (1971), 73–112. · Zbl 0208.38202
[4] Dixmier, J.,Les algébres d’opérateurs dans l’espace hilbertien. Gauthier-Villars, Paris, 2e édition, 1969.
[5] –,Les C *-algèbres et leurs représentations. Gauthier-Villars, Paris, 1964.
[6] – Formes linéaires sur un anneau d’opérateurs.Bull. Soc. Math. France, 81 (1953), 9–39. · Zbl 0050.11501
[7] Dye, H. A., The Radon-Nikodym theorem for finite rings of operators.Trans. Amer. Math. Soc., 72 (1952), 243–280. · Zbl 0047.11101
[8] Haag, R., Hugenholtz, N. M. &Winnink, M., On the equilibrium states in quantum statistical mechanics.Comm. Math. Phys., 5 (1967), 215–236. · Zbl 0171.47102 · doi:10.1007/BF01646342
[9] Halpern, H., Unitary implementation of automorphism groups on von Neumann algebras.Comm. Math. Phys., 25 (1972), 253–272. · Zbl 0231.46099 · doi:10.1007/BF01877685
[10] Herman, R. &Takesaki, M., States and automorphism groups of operator algebras.Comm. Math. Phys., 19 (1970), 142–160. · Zbl 0206.13001 · doi:10.1007/BF01646631
[11] Hille, E. & Phillips, R. S., Functional analysis and semi-groups.Amer. Math. Colloquium Publication, 31 (1957). · Zbl 0078.10004
[12] Hugenholtz, N. M., On the factor type of equilibrium states in quantum statistical mechanics.Comm. Math. Phys., 6 (1967), 189–193. · Zbl 0165.58702 · doi:10.1007/BF01659975
[13] Kadison, R. V., Transformations of states in operator theory and dynamics.Topology, 3 (1965), 177–198. · Zbl 0129.08705 · doi:10.1016/0040-9383(65)90075-3
[14] Kato, T.,Perturbation theory for linear operators. Springer-Verlag, 1966. · Zbl 0148.12601
[15] Murray, F. J. &von Neumann, J., On rings of operators.Ann. Math., 37 (1936), 116–229; II,Trans. Amer. Math. Soc., 41 (1937), 208–248. · Zbl 0014.16101 · doi:10.2307/1968693
[16] Pedersen, G. K., Measure theory forC *-algebras.Math. Scand., 19 (1966), 131–145; II,Math. Scand., 22 (1968), 63–74; III,Math. Scand., 25 (1969), 71–93; IV,Math. Scand., 25 (1969), 121–127.
[17] Pedersen, G. K. Some operator monotone functions. To appear inProc. Amer. Math. Soc.
[18] Pedersen, G. K. & Takesaki, M., The operator equation THT=K. To appear inProc. Amer. Math. Soc. · Zbl 0256.47020
[19] Perdrizet, E., Elements positif relativement à une algèbre hilbertienne à gauche.Compositio Math., 23 (1971), 25–47. · Zbl 0208.15903
[20] Petersen, N. H., Invariant weights on semi-finite von Neumann algebras, to appear. · Zbl 0265.46066
[21] Rudin, W.,Fourier analysis on groups. Interscience, New York, 1962. · Zbl 0107.09603
[22] Sakai, S., A Radon-Nikodym theorem inW *-algebras,Bull. Amer. Math. Soc., 71 (1965), 149–151. · Zbl 0132.10803 · doi:10.1090/S0002-9904-1965-11265-4
[23] Segal, I. E., A non-commutative extension of abstract integration.Ann. Math., 57 (1953), 401–457. · Zbl 0051.34201 · doi:10.2307/1969729
[24] Størmer, E., Types of von Neumann algebras associated with extremal invariant states.Comm. Math. Phys., 6 (1967), 194–204. · Zbl 0171.46903 · doi:10.1007/BF01659976
[25] Takesaki, M.,Tomita’s theory of modular Hilbert algebras and its applications. Lecture Notes in Mathematics no. 128, Springer-Verlag, 1970. · Zbl 0193.42502
[26] – Disjointness of the KMS-states of different temperatures.Comm. Math. Phys., 17 (1970), 33–41. · doi:10.1007/BF01649582
[27] Takesaki, M., Conditional expectations in von Neumann algebras. To appear inJ. Funct. Anal. · Zbl 0245.46089
[28] Tomita, M.,Quasi-standard von Neumann algebras. Mimeographed notes, 1967.
[29] Tomita, M.,Standard forms of von Neumann algebras. The 5th Functional Analysis Symposium of the Math. Soc. of Japan, Sendai, 1967.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.