×

zbMATH — the first resource for mathematics

A survey of homotopy theory. (English) Zbl 0262.55012

MSC:
55-02 Research exposition (monographs, survey articles) pertaining to algebraic topology
55P20 Eilenberg-Mac Lane spaces
55R50 Stable classes of vector space bundles in algebraic topology and relations to \(K\)-theory
55Q05 Homotopy groups, general; sets of homotopy classes
55S20 Secondary and higher cohomology operations in algebraic topology
55Q55 Cohomotopy groups
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Adams, J.F, On the structure and applications of the Steenrod algebra, Comment. math. helv., 32, 180-214, (1958) · Zbl 0083.17802
[2] Adams, J.F, On Chern characters and the structure of the unitary group, (), 189-199 · Zbl 0103.16001
[3] Adams, J.F, On the nonexistence of elements of Hopf invariant one, Ann. of math., 72, 20-103, (1960)
[4] Adams, J.F, Vector fields on spheres, Ann. of math., 75, 603-632, (1962) · Zbl 0112.38102
[5] Barratt, M.G; Barratt, M.G, Track groups. I, II, (), 285-329 · Zbl 0065.16302
[6] Barratt, M.G; Hilton, P.J, On join operations of homotopy groups, (), 430-445 · Zbl 0053.43403
[7] Blakers, A.L; Massey, W.S, The homotopy groups of a triad. II, Ann. of math., 55, 192-201, (1952) · Zbl 0046.40604
[8] Bott, R, The stable homotopy of the classical groups, Ann. of math., 70, 313-337, (1959) · Zbl 0129.15601
[9] \scH. Cartan, Algèbres d’Eilenberg-MacLane et homotopie, Séminaire H. Cartan, 1954-1955.
[10] Cartan, H; Serre, J.-P; Cartan, H; Serre, J.-P, Espaces fibrés et groupes d’homotopie, C.R. Paris, C.R. Paris, 234, 392-395, (1952) · Zbl 0049.40101
[11] Eilenberg, S; MacLane, S, Relations between homology and homotopy groups of spaces, Ann. of math., 51, 514-533, (1950) · Zbl 0036.12602
[12] Freudenthal, H, Über die klassen der sphärenabbildungen, Compositio math., 5, 299-314, (1937) · JFM 63.1161.02
[13] Hirzebruch, F, Neue topologische methoden in der algebraischen geometrie, (1956), Springer New York · Zbl 0070.16302
[14] Hopf, H, Über die abbildungen der drei dimensionalen sphären auf die kugelfläche, Math. ann., 104, 637-665, (1931) · JFM 57.0725.01
[15] Hopf, H, Über die abbildungen von sphären auf sphären niedrigerer dimension, Fund. math., 25, 427-440, (1935) · JFM 61.0622.04
[16] Hurewicz, W; Hurewicz, W; Hurewicz, W; Hurewicz, W, Beiträge zur topologie der deformationen. I-IV, (), 215-224 · Zbl 0013.28303
[17] James, I.M, Reduced product spaces, Ann. of math., 62, 170-197, (1955) · Zbl 0064.41505
[18] James, I.M, Suspension triad of a sphere, Ann. of math., 63, 407-429, (1956) · Zbl 0071.17101
[19] Liulevicius, A, The factorization of cyclic reduced powers by secondary cohomology operations, Mem. amer. math. soc., 42, (1962) · Zbl 0131.38101
[20] Moore, J.C, Some applications of homology theory to homotopy problems, Ann. of math., 58, 325-350, (1953) · Zbl 0052.19302
[21] Nakaoka, M; Toda, H, On a Jacobi identity for Whitehead products, J. Osaka city univ., 5, 1-13, (1954)
[22] Peterson, F.P, Functional cohomology operations, Trans. amer. math. soc., 80, 197-211, (1957) · Zbl 0212.55902
[23] Pontrjagin, L, A classification of mappings of the three-dimensional complex into the two-dimensional sphere, Recueil math. N.S., 9, 331-339, (1941) · JFM 67.0736.01
[24] Postnikov, M.M, Determination of the homology groups of a space by means of homotopy invariants, Dokl. akad. nauk USSR, 76, 359-362, (1951), (in Russian)
[25] Puppe, D, Homotopiemengen und ihre induzierten abbildungen. I, Math. Z., 69, 229-344, (1958) · Zbl 0092.39803
[26] Serre, J.-P, Homologie singulière des espaces fibrés, Ann. of math., 54, 425-503, (1951) · Zbl 0045.26003
[27] Serre, J.-P, Cohomologie modules 2 des complexes d’Eilenberg-MacLane, Comment. math. helv., 27, 198-231, (1953) · Zbl 0052.19501
[28] Serre, J.-P, Groupes d’homotopie et classes des groupes abéliens, Ann. of math., 58, 258-294, (1953) · Zbl 0052.19303
[29] Shimada, N, Triviality of the mod p Hopf invariants, (), 68-69 · Zbl 0096.17403
[30] Spanier, E, Borsuk’s cohomotopy groups, Ann. of math., 50, 203-245, (1949) · Zbl 0032.12402
[31] Spanier, E, Secondary operations on mappings and cohomology, Ann. of math., 75, 260-282, (1962) · Zbl 0105.17003
[32] Steenrod, N.E, Cohomology invariants of mappings, Ann. of math., 50, 954-988, (1949) · Zbl 0041.51803
[33] Steenrod, N.E, Cyclic reduced powers of cohomology classes, (), 217-223 · Zbl 0050.39501
[34] Toda, H, Generalized Whitehead products and homotopy groups of spheres, J. Osaka city univ., 3, 43-82, (1952)
[35] Toda, H, On double suspension E2, J. Osaka city univ., 7, 103-145, (1956)
[36] Toda, H, On exact sequences in Steenrod algebra mod 2, Mem. Kyoto univ., 31, 33-64, (1958) · Zbl 0089.17802
[37] Toda, H; Toda, H; Toda, H; Toda, H, p-primary components of homotopy groups. I-IV, Mem. kyto univ., Mem. kyto univ., Mem. kyto univ., Mem. kyto univ., 32, 297-332, (1959) · Zbl 0095.16802
[38] Toda, H, A topological proof of theorems of Bott, Borel, and Hirzebruch, Mem. Kyoto univ., 32, 103-119, (1958) · Zbl 0106.16403
[39] Toda, H, Composition methods in the homotopy groups of spheres, (1962), Princeton, Univ. Press Princeton, NJ · Zbl 0101.40703
[40] Whitehead, G.W, A generalization of the Hopf invariants, Ann. of math., 51, 192-237, (1950) · Zbl 0041.51903
[41] Whitehead, J.H.C, On adding relation to homotopy groups, Ann. of math., 42, 409-428, (1941) · Zbl 0027.26404
[42] Whitehead, J.H.C, Combinatorial homotopy, Bull. amer. math. soc., 55, 213-245, (1949) · Zbl 0040.38704
[43] Yamanoshita, T, On the homotopy groups of spheres, Japan. J. of math., 27, 1-53, (1957) · Zbl 0088.39302
[44] Yamanoshita, T, On the mod p Hopf invariant, (), 97-98 · Zbl 0096.17501
[45] Yamamoto, N, An application of functional higher operation, Osaka math. J., 2, 37-62, (1965) · Zbl 0151.31201
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.