Bott, Raoul; Haefliger, A. On characteristic classes of \(\Gamma\)-foliations. (English) Zbl 0262.57010 Bull. Am. Math. Soc. 78, 1039-1044 (1972). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 1 ReviewCited in 48 Documents MSC: 57R30 Foliations in differential topology; geometric theory 57R20 Characteristic classes and numbers in differential topology 58H05 Pseudogroups and differentiable groupoids PDFBibTeX XMLCite \textit{R. Bott} and \textit{A. Haefliger}, Bull. Am. Math. Soc. 78, 1039--1044 (1972; Zbl 0262.57010) Full Text: DOI References: [1] Raoul Bott, On topological obstructions to integrability, Actes du Congrès International des Mathématiciens (Nice, 1970) Gauthier-Villars, Paris, 1971, pp. 27 – 36. · Zbl 0225.57010 [2] Raoul Bott, On the Lefschetz formula and exotic characteristic classes, Symposia Mathematica, Vol. X (Convegno di Geometria Differenziale, INDAM, Rome, 1971) Academic Press, London, 1972, pp. 95 – 105. [3] Shiing-shen Chern and James Simons, Some cohomology classes in principal fiber bundles and their application to riemannian geometry, Proc. Nat. Acad. Sci. U.S.A. 68 (1971), 791 – 794. · Zbl 0209.25401 [4] Claude Godbillon and Jacques Vey, Un invariant des feuilletages de codimension 1, C. R. Acad. Sci. Paris Sér. A-B 273 (1971), A92-A95 (French). · Zbl 0215.24604 [5] I. M. Gel\(^{\prime}\)fand and D. B. Fuks, Cohomologies of the Lie algebra of tangent vector fields of a smooth manifold, Funkcional. Anal. i Priložen. 3 (1969), no. 3, 32 – 52 (Russian). [6] A. Haefliger, Feuilletages sur les variétés ouvertes, Topology 9 (1970), 183 – 194 (French). · Zbl 0196.26901 · doi:10.1016/0040-9383(70)90040-6 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.