Torus actions on homotopy complex projective spaces. (English) Zbl 0262.57021


57S15 Compact Lie groups of differentiable transformations
Full Text: DOI EuDML


[1] Atiyah, M.F.:K Theory. New York: Benjamin 1967.
[2] Atiyah, M.F., Hirzebruch, F.: Spin-manifolds and group actions. Essays on Topology and Related Topics. A. Haefliger and R. Narasimhan (Eds.) Berlin-Heidelberg-New York: Springer 1970. · Zbl 0193.52401
[3] Atiyah, M.F., Segal, G.: Index of elliptic operators II. Ann. of Math.87, 531-545 (1968). · Zbl 0164.24201
[4] Atiyah, M.F., Segal, G.: EquivariantK theory and completion. J. of Diff. Geometry3, 1-18 (1969). · Zbl 0215.24403
[5] Atiyah, M.F., Singer, I.: Index of elliptic operators III. Ann. of Math.87, 546-604 (1968). · Zbl 0164.24301
[6] Bass, H.: AlgebraicK-Theory. New York: Benjamin 1968. · Zbl 0174.30302
[7] Bredon, G.: Introduction to Compact Transformation Groups. New York-London: Academic Press 1972. · Zbl 0246.57017
[8] Newman, M.H.A.: A theorem on periodic transformations of spaces. Quart. J. Math., Oxford Series.2, 1-18 (1931). · Zbl 0001.22703
[9] Petrie, T.: SmoothS 1 actions on homotopy complex projective spaces and related topics. Bull. A.M.S.78, 105-153 (1972). · Zbl 0247.57010
[10] Petrie, T.: ExoticS 1 actions onCP 3 and related topics. Inventiones math.17, 317-328 (1972). · Zbl 0243.57020
[11] Sullivan, D.: Triangulating and smoothing homotopy equivalences and homeomorphisms. Mimeographed notes. Princeton University (1966).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.