Taylor, Walter Residually small varieties. (English) Zbl 0263.08005 Algebra Univers. 2, 33-53 (1972). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 2 ReviewsCited in 71 Documents MSC: 08B99 Varieties × Cite Format Result Cite Review PDF Full Text: DOI References: [1] P. D. Bacsich,Injective hulls as completions, Glasgow Math. J. (to appear). · Zbl 0256.18004 [2] P. D. Bacsich,Injectivity in model theory, Colloq. Math. (to appear). · Zbl 0214.01403 [3] K. A. Baker,Equational axiom problems in algebras whose congruence lattices are distributive (to appear). [4] Balcerzyk, S.; Mycielski, J., On faithful representations of free products of groups, Fundamenta Math., 50, 63-71 (1961) · Zbl 0124.26505 [5] B. Banaschewski,Injectivity and essential extensions in equational classes of algebras, Proceedings of the Conference on Universal Algebra (October, 1969), Queen’s Papers in Pure and Applied Mathematics No. 25, Kingston, Ontario, 1970, 131-147. · Zbl 0233.18002 [6] B. Banaschewski,Equational compactness of G-sets, manuscript (1971). · Zbl 0294.08003 [7] Banaschewski, B.; Bruns, G., Categorical characterization of the MacNeille completion, Arch. Math. (Basel), 18, 369-377 (1967) · Zbl 0157.34101 [8] Birkhoff, G., On the structure of abstract algebras, Proc. Cambridge Phil. Soc., 31, 433-454 (1935) · Zbl 0013.00105 · doi:10.1017/S0305004100013463 [9] Birkhoff, G., Subdirect unions in universal algebra, Bull. Amer. Math. Soc., 50, 764-768 (1944) · Zbl 0060.05809 · doi:10.1090/S0002-9904-1944-08235-9 [10] G. Birkhoff,Lattice theory, Amer. Math. Soc. Colloq. Publ. No. 25, 3rd Edition (Providence, 1967). · Zbl 0153.02501 [11] Cohn, P. M., Universal algebra (1965), New York: Harper and Row, New York · Zbl 0141.01002 [12] Daigneault, A., Injective envelopes, Amer. Math. Monthly, 76, 766-774 (1969) · Zbl 0184.03602 · doi:10.2307/2317864 [13] Day, A., Injectives in non-distributive equational classes of lattices are trivial, Arch. Math. (Basel), 21, 113-115 (1970) · Zbl 0208.29201 [14] A. Day,Injectivity in equational classes of algebras (to appear). · Zbl 0254.08008 [15] Dekker, T. J., On reflections in Euclidean spaces generating free products, Nieuw Archief voor Wiskunde, 7, 5, 57-60 (1959) · Zbl 0087.02301 [16] Erdös, P., Some set-theoretical properties of graphs, Univ. Nac. Tucumán Rev. Ser. A, 3, 363-367 (1942) · Zbl 0063.01265 [17] Erdös, P.; Rado, R., A partition calculus in set theory, Bull. Amer. Math. Soc., 62, 427-489 (1956) · Zbl 0071.05105 · doi:10.1090/S0002-9904-1956-10036-0 [18] Fuchs, L., Infinite Abelian Groups (1970), N.Y. and London: Academic Press, N.Y. and London · Zbl 0209.05503 [19] Grätzer, G., Universal Algebra (1968), Princeton: van Nostrand, Princeton · Zbl 0182.34201 [20] Grätzer, G.; Lakser, H., The structure of pseudocomplemented distributive lattices, II. Congruence extension and amalgamation, Trans. Amer. Math. Soc., 156, 343-358 (1971) · Zbl 0244.06011 · doi:10.2307/1995616 [21] Grätzer, G.; Lakser, H., Some new relations on operators in general, and for pseudocomplemented distributive lattices in particular, Notices Amer. Math. Soc., 17, 642-642 (1970) [22] D. Higgs,Remarks on residually small varieties, Algebra Universalis1/3 (1971). [23] Jónsson, B., Algebras whose congruence lattices are distributive, Math. Scand., 21, 110-121 (1967) · Zbl 0167.28401 [24] Jónsson, B., The amalgamation property in varieties of modular lattices, Notices Amer. Math. Soc., 18, 400-400 (1971) [25] Lakser, H., The structure of pseudocomplemented distributive lattices, I. Subdirect decomposition, Trans. Amer. Math. Soc., 156, 335-342 (1971) · Zbl 0244.06010 · doi:10.2307/1995615 [26] Lee, K. B., Equational classes of distributive pseudocomplemented lattices, Canad. J. Math., 22, 881-891 (1970) · Zbl 0244.06009 [27] Łoś, J., Abelian groups that are direct summands of every Abelian group which contains them as pure subgroups, Fundamenta Math., 44, 84-90 (1957) · Zbl 0079.03402 [28] Mal’cev, A. I., On the general theory of algebraic systems, Math. Sbornik (N.S.), 35, 77, 3-20 (1954) · Zbl 0057.02403 [29] R. McKenzie and S. Shelah,The cardinals of simple models for universal theories, Proceedings of the Tarski Symposium, Berkeley, California, 1971. To appear in Symposia in Pure Mathematics, Amer. Math. Soc., Providence. · Zbl 0316.02057 [30] Mycielski, J., Some compactifications of general algebras, Colloq. Math., 13, 1-9 (1964) · Zbl 0136.26102 [31] Mycielski, J.; Ryll-Nardzewski, C., Equationally compact algebras (II), Fund. Math., 61, 271-281 (1968) · Zbl 0263.08001 [32] Ribenboim, P., Characterization of the sup-complement in a distributive lattice with last element, Summa Brasil. Math., 2, 43-49 (1949) · Zbl 0040.01003 [33] Simpson, S. G., Model-theoretic proof of a partition theorem, Notices Amer. Math. Soc., 17, 964-964 (1970) [34] Tarski, A., A remark on functionally free algebras, Ann. of Math., 47, 2, 163-165 (1946) · Zbl 0060.06208 · doi:10.2307/1969039 [35] Taylor, W., Atomic compactness and elementary equivalence, Fundamenta Math., 71, 103-112 (1971) · Zbl 0238.02044 [36] W. Taylor,Some constructions of compact algebras, Annals of Math. Logic (to appear). · Zbl 0239.08003 [37] Taylor, W., Residually small varieties, Notices Amer. Math. Soc., 18, 621-621 (1971) [38] Weglorz, B., Equationally compact algebras (I), Fundamenta Math., 59, 289-298 (1966) · Zbl 0221.02039 [39] Węglorz, B., Equationally compact algebras (III), Fundamenta Math., 60, 89-93 (1967) · Zbl 0263.08002 [40] Węglorz, B., Remarks on compactifications of abstract algebras, Colloq. Math., 14, 372-372 (1966) [41] Węglorz, B.; Wojciechowska, A., Summability of pure extensions of relational structures, Colloq. Math., 19, 27-35 (1968) · Zbl 0184.01303 [42] Wenzel, G. H., Subdirect irreducibility and equational compactness in unary algebras <A; f>, Arch. Math. (Basel), 21, 256-264 (1970) · Zbl 0207.02902 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.