×

zbMATH — the first resource for mathematics

The etale homotopy theory of a geometric fibration. (English) Zbl 0263.14004

MSC:
14F30 \(p\)-adic cohomology, crystalline cohomology
55P15 Classification of homotopy type
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Artin, M., Grothendieck, A., and Verdier, J.-L.: Seminaire de geometrie algebrique; Cohomologie etale des schemas. I.H.E.S., 1963-64.
[2] Artin, M. and Mazur, B.: Etale Homotopy. Lecture notes in mathematics, No. 100, Berlin-Heidelberg-New York, Springer 1969. · Zbl 0182.26001
[3] Dieudonne, J. and Grothendieck, A.: Elements de geometrie algebrique. Pub. Math. I.H.E.S., No. 8 (1961).
[4] Friedlander, E.: Fibrations in etale homotopy theory. Pub. Math. I.H.E.S., No. 42 (1972). · Zbl 0351.55011
[5] Friedlander, E.: K(?,11)’s in characteristic p>0. To appear in Topology (1973). · Zbl 0251.14007
[6] Giraud, J.: Cohomologie non abelienne. Berlin-Heidelberg-New York, Springer 1971. · Zbl 0226.14011
[7] Grothendieck, A.: Seminaire de geometrie algebrique; Revetements etales et groupe fondamental. Lecture Notes in mathematics, No. 224, Berlin-Heidelberg-New York, Springer 1971.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.