Sur la monodromie des singularites isolees d’hypersurfaces complexes. (French) Zbl 0264.14002


14B05 Singularities in algebraic geometry
32Sxx Complex singularities
14E15 Global theory and resolution of singularities (algebro-geometric aspects)
Full Text: DOI EuDML


[1] Brauner, K.: Zur Geometrie der Funktionen zweier Komplexen Veränderlichen. Abh. Math. Sem. Hamburg,6, 1-54 (1928). · JFM 54.0373.01
[2] Brieskorn, E.: Die Monodromie der isolierten Singularitäten von Hyperflächen. manuscripta math.2, 103-160 (1970). · Zbl 0186.26101
[3] Burau, W.: Kennzeichnung der Schlauchknoten. Abh. Math. Sem. Hamburg,9, 125-133 (1932). · JFM 58.0615.01
[4] Clemens, C. H.: Picard-Lefschetz theorem for families of non-singular algebraic varieties acquiring ordinary singularities. Trans. Amer. Math. Soc.136, 93-108 (1969). · Zbl 0185.51302
[5] Deligne, P.: Equations différentielles à points singuliers réguliers. Lecture Notes in Mathematics163. Berlin-Heidelberg-New York: Springer 1970.
[6] Fox, R.: Free Differentiel Calculus V, The Alexander Matrices Reexamined. Ann. of Math.71, 187-196 (1960). · Zbl 0122.41801
[7] Grothendieck, A.: Sém. de Géométrie Algébrique SGA 7, 1968 Bures-Sur-Yvette, I.H.E.S., Lecture Notes in Mathematics288. Berlin-Heidelberg-New York: Springer 1972.
[8] Kähler, E.: Über die Verzweigung einer algebraischen Funktion zweier Veränderlichen in die Umgebung einer singulären Stelle. Math. Zeit.,30, 188-204 (1929). · JFM 55.0805.04
[9] Katz, N.: Nilpotent connections and the monodromy theorem. Applications of a result of Turrittin. Publ. Math. I.H.E.S. Bures-Sur-Yvette, 1971.
[10] Lê D?ng Tráng: Sur les noeuds algébriques. Centre de Math. Ecole Polytechnique, Paris, 1971 et à paraître au Comp. Math.
[11] Milnor, J.: Singular Points of complex Hypersurfaces. Ann. of Math. Studies, no. 61, Princeton 1968. · Zbl 0184.48405
[12] Pham, F.: Formules de Picard-Lefschetz généralisées et ramifications des intégrales. Bull. Soc. Math. France,93, 333-367 (1965). · Zbl 0192.29701
[13] Puiseux, V.: Recherches sur les Fonctions Algébriques. Journ. de Math. Pure et Appliquées,15, 365-480 (1850).
[14] Sebastiani, M., et Thom, R.: Un résultat sur la monodromie. Inventiones math.13, 90-96 (1971). · Zbl 0233.32025
[15] Zariski, O.: Cours à Harvard, Automne 1970.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.