×

zbMATH — the first resource for mathematics

A duality theorem for divisors on certain algebraic curves. (English) Zbl 0264.14004

MSC:
14H20 Singularities of curves, local rings
14C20 Divisors, linear systems, invertible sheaves
PDF BibTeX XML Cite
Full Text: Numdam EuDML
References:
[1] A. Altman and S. Kleiman [1] Introduction to Grothendieck Duality Theory , Lecture Notes in Mathematics No. 146, Springer-Verlag (1970). · Zbl 0215.37201 · doi:10.1007/BFb0060932
[2] R. Hartshorne [2] Residues and Duality , Lecture Notes in Mathematics No. 20, Springer-Verlag (1966). · Zbl 0212.26101 · doi:10.1007/BFb0080482 · eudml:203789
[3] F. Huikeshoven [3] Multiple algebraic curves, moduli problems , (Thesis, Amsterdam) (1971).
[4] M. Nagata [4] Local rings, Interscience tracts 13 , Interscience Publishers (1962). · Zbl 0123.03402
[5] F. Oort [5] Reducible and multiple algebraic curves , (Thesis, Leiden) (1961). · Zbl 0102.15905
[6] J.-P. Serre [6] Groupes algébriques et corps de classes , Act. Sc. Ind. 1264 Hermann (1959). · Zbl 0097.35604
[7] J. Tate [7] Residues of differentials on curves , Ann. scient. Ec. Norm. Sup. 4e série 1 (1968) 149-159. · Zbl 0159.22702 · doi:10.24033/asens.1162 · numdam:ASENS_1968_4_1_1_149_0 · eudml:81828
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.