Sur l’intégrabilite de Pettis. (French) Zbl 0264.28007


28B05 Vector-valued set functions, measures and integrals
46G10 Vector-valued measures and integration
Full Text: DOI EuDML


[1] Bourbaki, N.: Espaces vectoriels topologiques, Chap. III?V. Paris: Hermann 1964.
[2] : Intégration, Chap. VI. Paris: Hermann 1959
[3] Dunford, N., Schwartz, J. T.: Linear Operators, I. New York: Interscience 1958
[4] Meyer, P.A.: Probability and Potentials. Waltham. Blaisdell 1966 · Zbl 0138.10401
[5] Uhl, J.J., Jr.: A characterization of strongly measurable Pettis integrable functions. Proc. Amer. math. Soc.34, 425-427 (1972) · Zbl 0259.28004 · doi:10.1090/S0002-9939-1972-0316675-4
[6] Zaanen, A. C.: Linear analysis. Amsterdam: North-Holland 1953 · Zbl 0053.25601
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.