×

zbMATH — the first resource for mathematics

On vector measures in cartesian products. (English) Zbl 0264.28008

MSC:
28B05 Vector-valued set functions, measures and integrals
28A35 Measures and integrals in product spaces
PDF BibTeX XML Cite
Full Text: EuDML
References:
[1] Berberian S. K.: Counterexamples in Haar measure. Amer. Math. Monthly 4 (1966), 135-140. · Zbl 0143.04804
[2] Bessaga C., Pelczyński A.: On bases and unconditional convergence of series in Banach spaces. Studia Math. 17 (1958), 151-164. · Zbl 0084.09805
[3] Dinculeanu N., Kluvánek L.: On vector measures. Proc. London Math. Soc. (3) 17 (1967), 505-512. · Zbl 0195.34002
[4] Duchoň M.: On tensor product of vector measures in locally compact spaces. Mat. časop. 19 (1969), 324-329. · Zbl 0187.00901
[5] Dunford N., Schwartz J. T.: Linear operators I. New York, 1958. · Zbl 0084.10402
[6] Halmos P. R.: Measure theory. New York 1962.
[7] Johnson R. A.: On product measures and Fubini’s theorem in locally compact spaces. Transac. Amer. Math. Soc. 123 (1966), 112-129. · Zbl 0148.03102
[8] Kluvánek L.: Measures in cartesian products. (Slovak), Čas. pěst. mat. 92 (1967), 283-288. · Zbl 0177.18202
[9] Kluvánek L.: К тєории вєкторных мєр. Mat.-fyz. časop. 11 (1961), 173-191.
[10] Kluvánek L.: К тєории вєкторных мєр II. Mat.-fyz. časop. 16 (1966), 76-81.
[11] Kluvánek L.: Characterization of Fourier-Stieltjes transforms of vector and operator valued measures. Czechosl. Math. Jour. 17 (92), (1967), 261 - 277.
[12] Métivier M.: Sur les mesures à valeurs vectorielles et les limites projectives de télles mesures. C.R. Acad. Sci. Paris 256 (1963), 2993-2995. · Zbl 0115.26802
[13] Métivier M.: Limites projectives de mesures. Martingales. Applications. Annali di Matem. pura ed appl. (IV) LXIII (1963), 225-352. · Zbl 0137.35401
[14] Edwards D. A.: Vector-valued measure and bounded variation in Hilbert space. Math. Scand. 3 (1955), 90-96. · Zbl 0064.36902
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.