×

zbMATH — the first resource for mathematics

Geodesic flows on negatively curved manifolds. II. (English) Zbl 0264.53027

MSC:
53C20 Global Riemannian geometry, including pinching
53A35 Non-Euclidean differential geometry
28D05 Measure-preserving transformations
53C40 Global submanifolds
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] D. V. Anosov, Geodesic flows on closed Riemannian manifolds of negative curvature, Trudy Mat. Inst. Steklov. 90 (1967), 209 (Russian). · Zbl 0163.43604
[2] N. P. Bhatia and G. P. Szegő, Dynamical systems: Stability theory and applications, Lecture Notes in Mathematics, No. 35, Springer-Verlag, Berlin-New York, 1967. · Zbl 0155.42201
[3] George D. Birkhoff, Dynamical systems, With an addendum by Jurgen Moser. American Mathematical Society Colloquium Publications, Vol. IX, American Mathematical Society, Providence, R.I., 1966.
[4] R. L. Bishop and B. O’Neill, Manifolds of negative curvature, Trans. Amer. Math. Soc. 145 (1969), 1 – 49. · Zbl 0191.52002
[5] Herbert Busemann, The geometry of geodesics, Academic Press Inc., New York, N. Y., 1955. · Zbl 0068.36701
[6] Patrick Eberlein, Geodesic flow in certain manifolds without conjugate points, Trans. Amer. Math. Soc. 167 (1972), 151 – 170. · Zbl 0209.53304
[7] Patrick Eberlein, Geodesic flows on negatively curved manifolds. I, Ann. of Math. (2) 95 (1972), 492 – 510. · Zbl 0217.47304 · doi:10.2307/1970869 · doi.org
[8] Patrick Eberlein, Geodesic flows in manifolds of nonpositive curvature, Smooth ergodic theory and its applications (Seattle, WA, 1999) Proc. Sympos. Pure Math., vol. 69, Amer. Math. Soc., Providence, RI, 2001, pp. 525 – 571. · Zbl 1030.53084 · doi:10.1090/pspum/069/1858545 · doi.org
[9] Anna Grant, Surfaces of negative curvature and permanent regional transitivity, Duke Math. J. 5 (1939), no. 2, 207 – 229. · Zbl 0021.23603 · doi:10.1215/S0012-7094-39-00520-X · doi.org
[10] Gustav A. Hedlund, The dynamics of geodesic flows, Bull. Amer. Math. Soc. 45 (1939), no. 4, 241 – 260. · JFM 65.0793.02
[11] Gustav A. Hedlund, Fuchsian groups and mixtures, Ann. of Math. (2) 40 (1939), no. 2, 370 – 383. · Zbl 0020.40302 · doi:10.2307/1968925 · doi.org
[12] Gustav A. Hedlund, Fuchsian groups and transitive horocycles, Duke Math. J. 2 (1936), no. 3, 530 – 542. · Zbl 0015.10201 · doi:10.1215/S0012-7094-36-00246-6 · doi.org
[13] Eberhard Hopf, Statistik der geodätischen Linien in Mannigfaltigkeiten negativer Krümmung, Ber. Verh. Sächs. Akad. Wiss. Leipzig 91 (1939), 261 – 304 (German). · Zbl 0024.08003
[14] Eberhard Hopf, Statistik der Lösungen geodätischer Probleme vom unstabilen Typus. II, Math. Ann. 117 (1940), 590 – 608 (German). · Zbl 0023.26801 · doi:10.1007/BF01450032 · doi.org
[15] B. O’Neill, (to appear).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.