×

zbMATH — the first resource for mathematics

Extensions of zero-sets and of real-valued functions. (English) Zbl 0264.54011

MSC:
54C30 Real-valued functions in general topology
54C50 Topology of special sets defined by functions
54C20 Extension of maps
54C45 \(C\)- and \(C^*\)-embedding
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Alo, R. A., Imler, L., Shapiro, H. L.:P-andz-embedded sets, Math. Ann.188, 13-22 (1970) · Zbl 0188.55202 · doi:10.1007/BF01435410
[2] Blair, R. L.: Mappings that preserve realcompactness (to appear)
[3] Blair, R. L.: sOnv-embedded sets in topological spaces. In: Proceedings of the Second Pittsburgh Symposium on General Topology (Pittsburgh 1972) Lecture Notes in Mathematics, Berlin-Heidelberg-New York: Springer 1974
[4] Blair, R. L.: Additivity of the Hewitt realcompactification (to appear)
[5] Blair, R. L., Hager, A. W.: Notes on the Hewitt realcompactification of a product (to appear) · Zbl 0323.54021
[6] Dykes, N.: Mappings and spaces. Pacific J. Math.31, 347-358 (1969) · Zbl 0185.26402
[7] Engelking, R.: Outline of general topology. Warsaw: PWN 1965; English transl. Amsterdam: North-Holland; New York: Interscience 1968
[8] Gillman, L., Jerison, M.: Rings of continuous functions. Princeton: Van Nostrand 1960 · Zbl 0093.30001
[9] Hager, A. W.: On inverse-closed subalgebras ofC(X). Proc. London math. Soc. III. Ser.19, 233-257 (1969) · Zbl 0169.54005 · doi:10.1112/plms/s3-19.2.233
[10] Hager, A. W.: A class of nearly fine uniform spaces. Proc. London math. Soc. III Ser. (to appear) · Zbl 0284.54017
[11] Hager, A. W.: An approximation technique for real-valued functions 2 (to appear) · Zbl 0219.54010
[12] Hager, A. W.:C-, C * -, andz-embedding. Unpublished manuscript, 1967
[13] Hager, A. W., Johnson, D. G.: A note on certain subalgebras ofC(X). Canadian J. Math.20, 389-393 (1968) · Zbl 0162.26702 · doi:10.4153/CJM-1968-035-4
[14] Hager, A. W., Nanzetta, P., Plank, D.: Inversion in a class of lattice-ordered algebras. Colloquium math.24, 225-234 (1972) · Zbl 0243.06013
[15] Henriksen, M., Johnson, D. G.: On the structure of a class of archimedean latticeordered algebras. Fundamenta Math.50, 73-94 (1961) · Zbl 0099.10101
[16] Kat?tov, M.: Measures in fully normal spaces. Fundamenta Math.38, 73-84 (1951) · Zbl 0045.17101
[17] Mandelker, M.: Primez-ideal structure ofC(R). Fundamenta Math.63, 145-166 (1968)
[18] Mandelker, M.:F’-spaces andz-embedded subspaces. Pacific. J. Math.28, 615-621 (1969) · Zbl 0172.47903
[19] Mandelker, M.: Relative annihilators of lattices. Duke math. J.37, 377-386 (1970) · Zbl 0206.29701 · doi:10.1215/S0012-7094-70-03748-8
[20] Moran, W.: Measures on metacompact spaces. Proc. London math. Soc. III. Ser.20, 507-524 (1970) · Zbl 0199.37802 · doi:10.1112/plms/s3-20.3.507
[21] Mrówka, S.: Some properties ofQ-spaces. Bull. Acad. Polon., Sér. Sci. techn.5, 947-950 (1957)
[22] Mrówka, S.: On some approximation theorems. Nieuw Arch. Wiskunde, III. Ser.16, 94-111 (1968)
[23] Negrepontis, S.: On the product ofF-spaces. Trans. Amer. math. Soc.136, 339-346 (1969) · Zbl 0184.47802
[24] Negrepontis, S.: Absolute Baire sets. Proc. Amer. math. Soc.18, 691-694 (1967) · Zbl 0153.24503 · doi:10.1090/S0002-9939-1967-0214031-9
[25] Noble, N.:C-embedded subsets of products. Proc. Amer. math. Soc.31, 613-614 (1972) · Zbl 0231.54011
[26] Smirnov, Yu. M.: On normally disposed sets of normal spaces. Mat. Sbornik n. Ser.29, 173-176 (1951) (in Russian) · Zbl 0043.16502
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.