zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
On the convergence of a mixed finite-element method for plate bending problems. (English) Zbl 0264.65070

65N30Finite elements, Rayleigh-Ritz and Galerkin methods, finite methods (BVP of PDE)
65N15Error bounds (BVP of PDE)
74B99Elastic materials
Full Text: DOI EuDML
[1] Allman, D. J.: Triangular finite elements for plate bending with constant and linearly varying bending moments. Colloqium of the International Union of Theoretical and Applied Mechanics (IUTAM) on High Speed Computing of Elastic Structures, University of Liege, Belgium, August 23-28, 1970.
[2] Bramble, J., Hilbert, S. R.: Estimation of linear functionals on Sobolev spaces with application to Fourier transforms and Spline interpolation. Siam. J. Numer. Anal.7, 112-124 (1970). · Zbl 0201.07803 · doi:10.1137/0707006
[3] Bramble, J., Zlamal, M.: Triangular elements in the finite element method. Math. Comp.,24, 809-820 (1970). · doi:10.1090/S0025-5718-1970-0282540-0
[4] Hellan, K.: Analysis of elastic plates in flexure by a simplified finite element method. Acta Polytechnica Scandinavica, Ci 46, Trondheim, 1967. · Zbl 0237.73046
[5] Herrmann, L.: Finite element bending analysis for plates. J. of Mech., Div. ASCE, a 3, EM 5, 1967.
[6] Kondratev, V. A.: Boundary value problems for elliptic equations with conical or angular points. Trans. Moscow Math. Soc., 1967, pp. 227-313.
[7] Kufner, A.: Einige Eigenschaften der Sobolevschen Räume mit Belegungsfunktion. Czech. Math. J.15, 597-620 (1965). · Zbl 0148.37303
[8] Lions, J. L., Magenes, E.: Problemes aux limites non homogenes et applications. Vol. 1, Travaux Recherches Math., no. 17. Paris: Dunod 1968. · Zbl 0165.10801
[9] Necas, J.: Les methodes directes en theorie des equations elliptiques. Paris: Masson 1967.
[10] Mikhlin, S. G.: Variational methods in mathematical physics. Berlin: Akademie Verlag 1962. · Zbl 0116.33103
[11] Strang, G., Fix, G.: An analysis of the finite element method. Prentice-Hall, Inc. (to appear). · Zbl 0356.65096
[12] Synge, J. L.: The hypercircle in mathematical physics. Cambridge at the University Press 1957. · Zbl 0079.13802
[13] Visser, W.: A refined mixed type plate bending element. A.I.A.A. Journal7, 1969. · Zbl 0194.26601