zbMATH — the first resource for mathematics

On a geometric interpretation of multiplicity. (English) Zbl 0265.14004

14E15 Global theory and resolution of singularities (algebro-geometric aspects)
14C20 Divisors, linear systems, invertible sheaves
13H15 Multiplicity theory and related topics
14B05 Singularities in algebraic geometry
Full Text: DOI EuDML
[1] Grothendieck, A., Dieudonné, J.: Elements de geometrie algebrique. Publ. I.H.E.S.
[2] Kleiman, S.: Toward a numerical theory of ampleness. Ann. of Maths.84 (1966) · Zbl 0146.17001
[3] Zariski, O., Samuel, P.: Commutative algebra. Princeton: van Nostrand 1958 · Zbl 0081.26501
[4] Rees, D., Northcott, D.G.: Reductions of ideals in local rings. Proc. Camb. Phil. Soc.50 (1954) · Zbl 0057.02601
[5] Rees, D.: The grade of an ideal or module. Proc. Camb. Phil. Soc.53 (1957) · Zbl 0079.26602
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.