×

On the categories of general topology and topological algebra. (English) Zbl 0265.18008


MSC:

18D30 Fibered categories
18B99 Special categories
18C99 Categories and theories
18A40 Adjoint functors (universal constructions, reflective subcategories, Kan extensions, etc.)
08A05 Structure theory of algebraic structures
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] C. H. Cook andH. R. Fischer, Uniform convergence structures. Math. Ann.173, 290-306 (1967). · Zbl 0166.18702 · doi:10.1007/BF01781969
[2] H. R. Fischer, Limesr?ume. Math. Ann.137, 269-303 (1959). · Zbl 0086.08803 · doi:10.1007/BF01360965
[3] J. W.Gray, Fibred and cofibred categories. In: Proc. Conf. Categorical Algebra, La Jolla 1965. New York 1966. · Zbl 0192.10701
[4] A.Grothendieck, Cat?gories fibr?es et descente. S?m. g?om?trie alg?brique I.H.E.S. Paris 1961.
[5] J. F. Kennison, Reflective functors in general topology and elsewhere. Trans. Amer. Math. Soc.118, 303-315 (1965). · Zbl 0134.40705 · doi:10.1090/S0002-9947-1965-0174611-9
[6] H. J. Kowalsky, Limesr?ume und Komplettierung. Math. Nachr.12, 301-340 (1954). · Zbl 0056.41403 · doi:10.1002/mana.19540120504
[7] B.Mitchell, Theory of Categories. New York 1965. · Zbl 0136.00604
[8] O.Wyler, Operational categories. Proc. Conf. Categorical Algebra, La Jolla 1965. New York 1966. · Zbl 0202.32201
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.