zbMATH — the first resource for mathematics

The conditional intensity of general point processes and an application to line processes. (English) Zbl 0265.60047

60K99 Special processes
60G99 Stochastic processes
60B99 Probability theory on algebraic and topological structures
Full Text: DOI
[1] Davidson, R.: Some arithmetic and geometry in probability theory, Ph. D. thesis, University of Cambridge, 1968. To be reprinted in the memorial volume ?Stochastic Geometry?. Edited by E. F. Harding and D. G. Kendall. New York: Wiley 1974
[2] Davidson, R.: Construction of line processes: second order properties. Izv. Akad. Nauk Armjan. SSR Ser. Mat. 5, 219-234 (1970) · Zbl 0308.60013
[3] Kingman, J. F. C.: On doubly stochastic Poisson processes. Proc. Cambridge Philos. Soc. 60, 923-930 (1964) · Zbl 0134.14108
[4] Krickeberg, K.: The Cox process. Sympos. Math., Roma 9, Calcolo Probab., Teor. Turbolenza 1971, 151-167 (1972)
[5] Krickeberg, K.: Moments of point processes. Lecture Notes in Mathematics 296, 70-101. Berlin-Heidelberg-New York: Springer 1973
[6] Mecke, J.: Station?re zuf?llige Ma\(\backslash\)e auf lokalkompakten Abelschen Gruppen. Z. Wahrschein-lichkeitstheorie verw. Geb. 9, 36-58 (1967) · Zbl 0164.46601
[7] Papangelou, F.: On the Palm probabilities of processes of points and processes of lines, to appear in the memorial volume ?Stochastic Analysis and Geometry?. Edited by E. F. Harding and D. G. Kendall. New York: Wiley 1974 · Zbl 0293.60046
[8] Papangelou, F.: Summary of some results on point and line processes. Stochastic point processes (editor P. A. W. Lewis), p. 522-532. New York: Wiley 1972 · Zbl 0262.60038
[9] Papangelou, F.: Integrability of expected increments of point processes and a related random change of scale. Trans. Amer. Math. Soc. 165, 483-506 (1972) · Zbl 0236.60036
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.