Higher order compatible triangular finite elements. (English) Zbl 0265.65011


65D10 Numerical smoothing, curve fitting
41A65 Abstract approximation theory (approximation in normed linear spaces and other abstract spaces)
Full Text: DOI EuDML


[1] Barnhill, R. E., Birkhoff, G., Gordon, W. J.: Smooth interpolation in triangles. J. Approx. Th.8, 114-128 (1973) · Zbl 0271.41002
[2] Barnhill, R. E., Mansfield, L.: Error bounds for smooth interpolation in triangles. J. Approx. Th. (to appear) · Zbl 0286.41001
[3] Birkhoff, G.: Tricubic polynomial interpolation. Proc. Nat’l.Acad. Sci.68, 1162-64 (1971) · Zbl 0242.41007
[4] Birkhoff, G.: Interpolation to boundary data in triangles. J. Math. Anal. Appl.42, 474-484 (1973) · Zbl 0262.41003
[5] Birkhoff. G., Mansfield, L.: Compatible triangular finite elements. J. Math. Anal. Appl. (to appear) · Zbl 0284.35021
[6] Bramble, J. H., Zlámal, M.: Triangular elements in the finite element method. Math. of Comp.24, 809-820 (1970) · Zbl 0226.65073
[7] Dupuis, G., Goël, J.-J.: Finite element with high degree of regularity. Int. J. Num. Meth. Eng.2, 563-577 (1970) · Zbl 0257.65089
[8] Goël, J.-J.: Construction of basic functions for numerical utilization of Ritz’s method. Numer. Math.12, 435-447 (1968) · Zbl 0271.65061
[9] Strang, G.: Approximation in the finite element method. Numer. Math.19, 81-98 (1972) · Zbl 0221.65174
[10] ?eni?ek, A.: Interpolation polynomials on the triangle. Numer. Math.15, 283-296 (1970) · Zbl 0216.38901
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.