Optimale Basiswahl für eine Gleitkomma-Arithmetik. (German) Zbl 0265.65027


65G50 Roundoff error
68Q45 Formal languages and automata
Full Text: DOI


[1] Benford, F.: The Law of Anomalous Numbers. Proc. Amer. Phil. Soc.78, 551 (1938). · Zbl 0018.26502
[2] Goldberg, I. B.: 27 Bits Are Not Enough for 8-Digit Accuracy. Comm. ACM10, 105 (1967).
[3] Hamming, R. W.: On the Distribution of Numbers. Bell Sys. Tech. J.49, 1609 (1970). · Zbl 0211.46701
[4] Hull, T. E., and J. R. Swenson: Tests of Probabilistic Models for the Propagation of Roundoff Errors. Comm. ACM9, 108 (1966). · Zbl 0158.15302
[5] Kreifelts, Th.: Über vollautomatische Erfassung und Abschätzung von Rundungsfehlern in arithmetischen Prozessen. Ber. Ges. Math. Datenverarb. Bonn, Nr. 62 (1972). · Zbl 0251.65035
[6] Matula, D. W.: Base Conversion Mappings. Proc. Amer. Fed. Information Processing Soc.30, 311 (1967).
[7] Richman, P.: Floating-Point Number Representations: Base Choice versus Exponent Range. Tech. Rep. Nr. CS 64, Comp. Sc. Dep., Stanford Univ., Stanford, Cal. (USA), 1967.
[8] Tienari, M.: A Statistical Model of Roundoff Error for Varying Length Floating-Point Arithmetic. BIT10, 355 (1970). · Zbl 0213.16203
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.