×

zbMATH — the first resource for mathematics

Compactifications of semitopological semigroups. (English) Zbl 0266.22002

MSC:
22A99 Topological and differentiable algebraic systems
22A15 Structure of topological semigroups
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Berglund, Pacific J. Math. 33 pp 281– (1970) · Zbl 0184.05501
[2] Dixmier, Les C*-algèbres et leurs représentations (1964)
[3] DOI: 10.2307/2372076 · Zbl 0046.11702
[4] Greenleaf, Invariant Means on Topological Groups and Their Applications (1969) · Zbl 0174.19001
[5] Granirer, Fund. Math. 60 pp 1– (1967)
[6] Glicksberg, Pacific J. Math. 11 pp 205– (1961) · Zbl 0104.33901
[7] DOI: 10.1215/S0012-7094-57-02417-1 · Zbl 0079.16602
[8] Dunford, Linear Operators I (1964) · Zbl 0056.34601
[9] DOI: 10.1007/BF02559535 · Zbl 0104.05501
[10] Berglund, Compact Semitopological Semigroups and Weakly Almost Periodic Functions (1967) · Zbl 0155.18702
[11] Weil, L’intégration dans les groups topologiques et ses applications (1965)
[12] Burckel, Weakly Almost Periodic Functions on Semigroups (1970)
[13] DOI: 10.2307/1993996 · Zbl 0139.30901
[14] DOI: 10.2307/2035046 · Zbl 0117.08302
[15] Pym, Proc. London Math. Soc. 15 pp 84– (1964)
[16] Phelps, Lecturers on Choquet’s Theorem (1966) · Zbl 0172.15603
[17] Namioka, Studia Math. 29 pp 63– (1967)
[18] Montgomery, Topological Transformation Groups (1966) · Zbl 0073.25802
[19] DOI: 10.2307/1994775 · Zbl 0179.21101
[20] Kelley, General Topology (1955)
[21] Weil, Sur les espaces à structure uniforme et sur la topologie générale (1937) · JFM 63.0569.04
[22] DOI: 10.2307/2037560 · Zbl 0258.43003
[23] McMullen, Extensions of positive definite functions (1972) · Zbl 0258.43014
[24] Eymard, Bull. Soc. math. 92 pp 181– (1964)
[25] Witz, Illinois J. Math. 8 pp 685– (1964)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.