×

zbMATH — the first resource for mathematics

Self-adjointness for strongly singular potentials with \(a - {| x |}^2\) fall-off at infinity. (English) Zbl 0266.35018

MSC:
35J10 Schrödinger operator, Schrödinger equation
47F05 General theory of partial differential operators (should also be assigned at least one other classification number in Section 47-XX)
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Carleman, T.: Sur les équations intégrales singulières à noyau reél et symétrique. Uppsala universitets arsskrift 1923 · JFM 49.0272.01
[2] Carleman, T.: Sur la théorie mathématique de l’équation de Schr?dinger. Arkiv för mat., astr. och fysik24B, N: o11 (1934). (=Edition complète des articles de Torsten Carleman: Malmö 1960)
[3] Dunford, N., Schwartz, J. T.: Linear operators. Part II. 3rd printing. New York-London-Sydney: Interscience 1967
[4] Friedrichs, K.: Über die ausgezeichnete Randbedingung in der Spektraltheorie der halbbeschränkten gewöhnlichen Differentialoperatoren zweiter Ordnung. Math. Ann.112, 1-23 (1935/36) · JFM 61.1198.02 · doi:10.1007/BF01565401
[5] Glazman, I. M.: Direct methods of qualitative spectral analysis of singular differential operators. Jerusalem: Israel program for scientific translations 1965 · Zbl 0143.36505
[6] Hellwig, G.: Differential operators of mathematical physics. Reading: Addison-Wesley 1967 · Zbl 0163.11801
[7] Ikebe, T., Kato, T.: Uniqueness of the self-adjoint extensions of singular elliptic differential operators. Arch. rat. Mech. Analysis9, 77-92 (1962) · Zbl 0103.31801 · doi:10.1007/BF00253334
[8] Jörgens, K.: Wesentliche Selbstadjungiertheit singulärer elliptischer Differentialoperatoren zweiter Ordnung inC 0 ? (G). Math. Scandinav.15, 5-17 (1964) · Zbl 0132.07601
[9] Jörgens, K.: Spectral theory of Schrödinger operators. Lectures delivered at the University of Colorado, Boulder, CO (March 1970)
[10] Kalf, H.: On the characterization of the Friedrichs extension of ordinary or elliptic differential operators with a strongly singular potential. J. functional Analysis10, 230-250 (1972) · Zbl 0237.35026 · doi:10.1016/0022-1236(72)90051-1
[11] Kalf, H., Walter, J.: Strongly singular potentials and essential self-adjointness of singular elliptic operators in 255-1. J. functional Analysis10, 114-130 (1972) · Zbl 0229.35041 · doi:10.1016/0022-1236(72)90059-6
[12] Kalf, H., Walter, J.: Note on a paper of Simon on the essential self-adjointness of Schrödinger operators with singular potentials. Arch. rat. Mech. Analysis. (To appear) · Zbl 0277.47008
[13] Nilsson, N.: Essential self-adjointness and the spectral resolution of Hamiltonian operators. Kungl. Fysiogr. Sällsk. i Lund Förh. Bd29, Nr. 1 (1959)
[14] Schmincke, U.-W.: Essential selfadjointness of a Schrödinger operator with strongly singular potential. Math. Z.124, 47-50 (1972) · Zbl 0225.35037 · doi:10.1007/BF01142581
[15] Simon, B.: Essential self-adjointness of Schrödinger operators with singular potentials: A generalized Kalf-Walter-Schmincke theorem. Arch. rat. Mech. Analysis52, 44-48 (1973) · Zbl 0277.47007 · doi:10.1007/BF00249091
[16] Walter, J.: Symmetrie elliptischer Differentialoperatoren II. Math. Z.106, 149-152 (1968) · Zbl 0159.40202 · doi:10.1007/BF01110721
[17] Wienholtz, E.: Bemerkungen über elliptische Differentialoperatoren. Arch. der Math.10, 126-133 (1959) · Zbl 0109.07202 · doi:10.1007/BF01240774
[18] Wintner, A.: On the momentum operator in wave mechanics. Phys. Rev.71, 547-549 (1947) · Zbl 0032.23404 · doi:10.1103/PhysRev.71.547
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.