×

zbMATH — the first resource for mathematics

Nemitsky operators on Sobolev spaces. (English) Zbl 0266.46029

MSC:
46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems
26A16 Lipschitz (Hölder) classes
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Agmon, S., Lectures on Elliptic Boundary Value Problems. Princeton: Van Nostrand 1965. · Zbl 0142.37401
[2] Burkill, J. C., & U. S. Haslam-Jones, Notes on the differentiability of functions of two variables. J. Lond. Math. Soc. 7, 297–303 (1932). · Zbl 0005.39104 · doi:10.1112/jlms/s1-7.4.297
[3] Calkin, J. W., Functions of several variables and absolute continuity I. Duke Math. J. 6, 170–186 (1940). · JFM 66.1224.03 · doi:10.1215/S0012-7094-40-00614-7
[4] Caratheodory, C., Vorlesungen über reelle Funktionen. Leipzig and Berlin 1918.
[5] Federer, H., Geometric Measure Theory. Grundlehren d. Math. Wiss., vol. 153. New York: Springer 1969. · Zbl 0176.00801
[6] Gagliardo, E., Proprietà di alcune classi di funzioni in più variabili. Ricerche di Mat. 7, 102–137 (1958). · Zbl 0089.09401
[7] Halmos, P., Functions of integrable functions. J. Indian Math. Soc. 11, 81–84 (1948). · Zbl 0030.14502
[8] Hardy, G. H., & J. E. Littlewood, Some properties of fractional integrals I. Math. Zeit. 27, 565–606 (1927–28). · JFM 54.0275.05 · doi:10.1007/BF01171116
[9] Krasnosellskii, M. A., Topological Methods in the Theory of Nonlinear Integral Equations. Translated by J. Burlak. New York: Macmillan 1964.
[10] Krasnosellskii, M. A., & Y. B. Rutickii, Convex Functions and Orlicz Spaces. Translated by L. F. Boron. Holland: Noordhoff 1961.
[11] Krasnosellskii, M. A., P. P. Zabreiko, E. I. Pustyenik, & P. E. Sobolevskii, Integral Operators in Spaces of Summable Functions [Russian]. Moscow 1966.
[12] Marcus, M., & V. J. Mizel, Absolute continuity on tracks and mappings of Sobolev spaces. Arch. Rational Mech. Anal. 45, 294–320 (1972). · Zbl 0236.46033 · doi:10.1007/BF00251378
[13] Mizel, V. J., & K. Sundaresan, Representation of vector valued nonlinear functions. Trans. Amer. Math. Soc. 159, 111–128 (1971). · Zbl 0235.46070 · doi:10.1090/S0002-9947-1971-0279647-8
[14] Morrey, C. B., Functions of several variables and absolute continuity II. Duke Math. J. 6, 187–215 (1940). · Zbl 0026.39401 · doi:10.1215/S0012-7094-40-00615-9
[15] Saks, S., Theory of the Integral, Second ed. (Monografje Math. vol. 7) Warsaw, 1937. Reprinted New York, Dover: Stechert-Hafner 1964.
[16] Serrin, J., Personal communication, 1971.
[17] Serrin, J., On the differentiability of functions of several variables. Arch. Rational Mech. Anal. 7, 359–372 (1961). · Zbl 0109.03904 · doi:10.1007/BF00250769
[18] Serrin, J., & D. E. Varberg, A general chain rule for derivatives and the change of variables formula for the Lebesgue integral. Amer. Math. Monthly 76, 514–520 (1969). · Zbl 0175.34401 · doi:10.1080/00029890.1969.12000249
[19] Vainberg, M. M., Variational Methods for the Study of Nonlinear Operators. San Francisco: Holden-Day 1964.
[20] Vallée Poussin, Ch. J. de la, Sur l’integrale de Lebesgue. Trans. Amer. Math. Soc. 16, 435–501 (1915). · doi:10.2307/1988879
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.