×

Linear optimal control systems with incomplete information about state of system. (English) Zbl 0266.49020


MSC:

49L99 Hamilton-Jacobi theories
93C05 Linear systems in control theory
93C55 Discrete-time control/observation systems
93C99 Model systems in control theory
PDF BibTeX XML Cite
Full Text: EuDML

References:

[1] Athans M., Falb P.: Optimal Control. Mc Graw-Hill, N.Y. 1966. · Zbl 0196.46303
[2] Athans M.: The Matrix Minimum Principle. Information and Control 11 (1968), 6, 592-606. · Zbl 0176.07301
[3] Athans M., Levin W. S.: On the Determination of Optimal Constant Output Feedback Gains for Linear Multivariable Systems. IEEE Trans. on Aut. Control AC-15 (1970), 1, 44-49.
[4] Athans M., Levin W. S.: On the Design of Optimal Control Systems. Proceedings of 6-th Allerton Conference on System and Circuit Theory (1968), 661- 670.
[5] Bellman R.: Introduction to Matrix Analysis. Mc Graw-Hill, N.Y. 1960. · Zbl 0124.01001
[6] Dabke K. P.: Suboptimal linear Regulators with Incomplete State Feedback. IEEE Trans. on Aut. Control AC-15 (1970), 1, 120-122.
[7] Ferguson J. D., Rekasius Z. V.: Optimal Control Systems. IEEE Trans. on Aut. Control AC-14 (1969), 2.
[8] Fink M.: Lineární regulační obvody s neúplnou informací o stavu systému. (Linear Control Circuits with Incomplete Information about State nf the System). Thesis. Praha 1970.
[9] Kalman R. E.: When is a Linear Control System Optimal. Jour. of Basic Eng. 86 (1964), 1, 51-60.
[10] Kreindler E., Hedrick J. K.: On Equivalence of Quadratic Loss Functions. Intern. Journ. Control 11 (1970), 2, 213-222. · Zbl 0186.22805
[11] Leuenberger D. G.: Observers for Multivariable Systems. IEEE Trans. on Aut. Control AC-11 (1966), 2, 190-199.
[12] Luenberger D. G.: Observing the State of a Linear System. IEEE Trans. Military Electronics ME-8 (1964), 2, 74-80.
[13] Mann F. T.: Suboptimal control of Linear Time Invariant Systems. IEEE Trans. on Aut. Control AC-15 (1970), 1, 112-114.
[14] Newman M. M.: Specific Optimal Control of the Linear Regularor Using a Dynamic Controller Based on the Minimal Order Luenberger Observer. Int. J. Control 12 (1970), 1, 33-48. · Zbl 0198.20002
[15] Pearcon J. B., Ding C. Y.: Compensator Design for Multivariable Control Systems. IEEE Trans. on Aut. Control AC-14 (1969), 2, 130-134.
[16] Rugh W. J., Murphy G. J.: System Equivalent Optimal Control Problems. Proceed. 6-th Allerton Conference on System and Circuit Theory (1968), 690-699.
[17] Sarma I. G., Jayrai C.: On the Use of Observers in Finite Time Optimal Regulator Problems. Int. Journ. Control 11 (1970), 3, 489-498. · Zbl 0206.15204
[18] Stříbrský A.: Numerické metody výpočtu optimálních regulačních pochodů podle principu maxima. (Numerical Methods for Computing Optimal Controlled Circuits by Maximum Principle). Thesis. Praha 1969.
[19] Štecha J.: Některé metody výpočtu optimálních řídících systémů podle principu maxima. (Some Methods for Computing Optimal Controlled Systems by Maximum Principle). CSc Thesis. Praha 1970.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.