×

Non cobordant foliations of S\(^3\). (English) Zbl 0266.57004


MSC:

57R30 Foliations in differential topology; geometric theory
57R20 Characteristic classes and numbers in differential topology
55R40 Homology of classifying spaces and characteristic classes in algebraic topology
Full Text: DOI

References:

[1] I. M. Gel\(^{\prime}\)fand and D. B. Fuks, Cohomologies of the Lie algebra of vector fields on the circle, Funkcional. Anal. i Priložen. 2 (1968), no. 4, 92 – 93 (Russian). I. M. Gel\(^{\prime}\)fand and D. B. Fuks, Cohomologies of the Lie algebra of vector fields on a manifold, Funkcional. Anal. i Priložen. 3 (1969), no. 2, 87 (Russian).
[2] Claude Godbillon and Jacques Vey, Un invariant des feuilletages de codimension 1, C. R. Acad. Sci. Paris Sér. A-B 273 (1971), A92-A95 (French). · Zbl 0215.24604
[3] A. Haefliger, Feuilletages sur les variétés ouvertes, Topology 9 (1970), 183 – 194 (French). · Zbl 0196.26901 · doi:10.1016/0040-9383(70)90040-6
[4] André Haefliger, Homotopy and integrability, Manifolds – Amsterdam 1970 (Proc. Nuffic Summer School), Lecture Notes in Mathematics, Vol. 197, Springer, Berlin, 1971, pp. 133 – 163.
[5] John N. Mather, On Haefliger’s classifying space. I, Bull. Amer. Math. Soc. 77 (1971), 1111 – 1115. · Zbl 0224.55022
[6] H. Rosenberg and W. Thurston, Some examples of foliations, Proc. Internat. Conference on Dynamical Systems at Salvador, Brazil, 1971 (to appear).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.