Tables for two normal-scores rank tests for the two-sample location problem. (English) Zbl 0266.62064


62G10 Nonparametric hypothesis testing
62Q05 Statistical tables
Full Text: DOI EuDML


[1] J. Hájek Z. Šidák: Theory of rank tests. Academia, Prague & Academic Press, New York - London 1967. · Zbl 0161.38102
[2] H. L. Harter: Expected values of normal order statistics. Biometrika 48 (1961), 151 - 165. · Zbl 0134.15203 · doi:10.1093/biomet/48.1-2.151
[3] J. H. Klotz: On the normal scores two-sample rank test. J. Amer. Statist. Assoc. 59 (1964), 652-664. · Zbl 0129.32803 · doi:10.2307/2283091
[4] D. Teichroew: Tables of expected values of order statistics and products of order statistics for samples of size twenty and less from the normal distribution. Ann. Math. Statist. 27 (1956), 410-426. · Zbl 0071.13501 · doi:10.1214/aoms/1177728266
[5] M. E. Terry: Some rank order tests which are most powerful against specific parametric alternatives. Ann. Math. Statist. 23 (1952), 346-366. · Zbl 0048.36702 · doi:10.1214/aoms/1177729381
[6] B. L. van der Waerden E. Nievergelt: Tafeln zum Vergleich zweier Stichproben mittels X-test und Zeichentest. Springer Verlag, Berlin - Göttingen- Heidelberg, 3956. · Zbl 0070.14506
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.