×

zbMATH — the first resource for mathematics

On integers with many small prime factors. (English) Zbl 0267.10056

MSC:
11N05 Distribution of primes
11B99 Sequences and sets
PDF BibTeX XML Cite
Full Text: Numdam EuDML
References:
[1] A. Baker [1] Linear forms in the logarithms of algebraic numbers IV , Mathematika, 15 (1968), 204-216. · Zbl 0169.37802 · doi:10.1112/S0025579300002588
[2] A. Baker [2] Contributions to the theory of diophantine equations: II. The diophantine equation y2 = x3+k. Phil . Trans. Royal Soc. (London), A 263 (1968), 193-208. · Zbl 0157.09801 · doi:10.1098/rsta.1968.0011
[3] A. Baker [3] A sharpening of the bounds for linear forms in logarithms II, to appear in the Siegel birthday volume of Acta Arith . · Zbl 0261.10025 · eudml:205210
[4] B.J. Birch , S. Chowla , M. Halljr. and A. Schinzel [4] On the difference x3-y2 , Norske Vid. Selsk. Forh. (Trondheim), 38 (1965), 65-69. · Zbl 0144.03901
[5] J.W.S. Cassels [5] On a class of exponential equations , Arkiv f. Mat., 4 (1963), 231-233. · Zbl 0102.03507 · doi:10.1007/BF02592010
[6] J. Coates [6] An effective p-adic analogue of a theorem of Thue , Acta Arith., 15 (1969), 279-305; II : 16 (1970), 399-412; III : 16 (1970), 425-435. · Zbl 0221.10027 · eudml:204939
[7] P. Erdös [7] Some recent advances and current problems in number theory , Lectures on Modern Mathematics, Vol. III, 196-244, Wiley, New York, 1965. · Zbl 0132.28402
[8] P. Erdös and J.L. Selfridge [8 ] Some problems on the prime factors of consecutive integers II , Proc. Washington State Univ. Conf. Number Theory, Pullman (Wash.), 1971. · Zbl 0228.10028
[9] N.I. Fel’Dman [9] Improved estimate for a linear form of the logarithms of algebraic numbers , Mat. Sb., 77 (1968), 432-436. Transl. Math. USSR Sb., 6 (1968), 393-406. · Zbl 0235.10018 · doi:10.1070/SM1968v006n03ABEH001067 · eudml:70087
[10] D. Hanson [10] On the product of the primes , Canad. Math. Bull., 15 (1972), 33-37. · Zbl 0231.10008 · doi:10.4153/CMB-1972-007-7
[11] D.H. Lehmer [11] On a problem of Størmer , Illinois J. Math., 8 (1964), 57-79. · Zbl 0124.27202
[12] D.H. Lehmer [12] The prime factors of consecutive integers , Amer. Math. Monthly, 72 (1965) no. 2, part II, 19-20. · Zbl 0128.04002 · doi:10.2307/2313306
[13] K. Mahler [13] Zur Approximation algebraischer Zahlen , Math. Ann., I: 107 (1933), 691-730, II: 108 (1933), 37-55. · Zbl 0006.10502 · doi:10.1007/BF01448915 · eudml:159614
[14] K. Mahler [14] Lectures on diophantine approximations. Part 1: g-adic numbers and Roth’s theorem . Univ. of Notre Dame Press, Ind., 1961. · Zbl 0158.29903
[15] G. Pólya [15] Zur arithmetischen Untersuchung der Polynome , Math. Z., 1 (1918), 143-148. · JFM 46.0240.04
[16] K. Ramachandra [16] A note on numbers with a large prime factor II , J. Indian Math. Soc., 34 (1970), 39-48. · Zbl 0218.10057
[17] J. Barkley Rosser and L. Schoenfeld [17] Approximate formulas for some functions of prime numbers , Illinois J. Math., 6 (1962), 64-94. · Zbl 0122.05001
[18] C. Siegel [18] Approximation algebraischer Zahlen , Math. Z., 10 (1921), 173-213. · JFM 48.0163.07
[19] C. Siegel [19] Über Näherungswerte algebraischer Zahlen , Math. Ann., 84 (1921), 80-99. · JFM 48.0164.01
[20] V.G. Sprindžuk [20] A new application of p-adic analysis to representation of numbers by binary forms , Izv. Akad. Nauk SSSR, Ser. Mat. 34 (1970), 1038-1063. Transl. Math. USSR Izvestija, 4 (1970), 1043-1069. · Zbl 0225.10022 · doi:10.1070/IM1970v004n05ABEH000944
[21] V.G. Sprindžuk [21] New applications of analytic and p-adic methods in diophantine approximations , Proc. Intern. Congress Math. Nice 1970, Gauthier Villars, Paris, 1971. · Zbl 0232.10021
[22] C. Størmer [22] Sur une équation indéterminée , C. R. Paris, 127 (1898), 752-754. · JFM 29.0160.01
[23] A. Thue [23] Bermerkungen über gewisse Näherungsbrüche algebraischer Zahlen , Skrift. Vidensk. Selsk. Christ., 1908, Nr. 3. · JFM 40.0273.01
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.