On the adjoint of an elliptic linear differential operator and its potential theory. (English) Zbl 0267.31011


31D05 Axiomatic potential theory
35J15 Second-order elliptic equations
Full Text: DOI


[1] Boboc, N., &Mustatâ, P.,Espaces harmoniques associés aux opérateurs différentiels linéaires du second ordre de type elliptique. Lecture Notes in Mathematics 68. Springer-Verlag, Berlin-Heidelberg-New York, 1968.
[2] Brelot, M., Une axiomatique générale du problème de Dirichlet dans les espaces localement compacts.Séminaire de Théorie du potentiel, Ire année (1957).
[3] Brelot, M., Axiomatique des fonctions harmoniques et surharmoniques dans un espace localement compact.Séminaire de Théorie du potentiel, 2e année (1958).
[4] Hervé, R.-M., Recherches axiomatiques sur la théorie des fonctions surbarmoniques et du potentiel.Ann. Inst. Fourier, 12 (1962), 415–571. · Zbl 0101.08103
[5] Littman, W., Generalized subharmonic functions: monotonic approximations, and an improved maximum principle.Ann. Sc. Norm. Sup., Pisa, 17 (1963), 207–222. · Zbl 0123.29104
[6] Miranda, C.,Partial Differential Equations of Elliptic Type. Second Revised Edition. Springer-Verlag, Berlin-Heidelberg-New York, 1970. · Zbl 0198.14101
[7] Widman, K.-O., Inequalities for the Green function and boundary continuity of the gradient of solutions of elliptic differential equations.Math. Scand. 21 (1967), 17–37. · Zbl 0164.13101
[8] Widman, K.-O. Inequalities for Green functions of second order elliptic operators. Report 8 (1972). Linköping University, Dept. of Math.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.