Principal orbit types for reductive groups acting on Stein manifolds. (English) Zbl 0267.32015


32E10 Stein spaces
32M05 Complex Lie groups, group actions on complex spaces
22E10 General properties and structure of complex Lie groups
Full Text: DOI EuDML


[1] Borel, A.: Linear Algebraic Groups. New York: W. A. Benjamin 1969 · Zbl 0206.49801
[2] Borel, A.: Representations de Groupes Localement Compacts. Lecture Notes in Mathematics 276. Berlin-Heidelberg-New York: Springer 1972 · Zbl 0242.22007
[3] Gunning, R., Rossi, H.: Analytic Functions of Several Complex Variables. Englewood Cliffs, N. J.: Prentice-Hall 1965 · Zbl 0141.08601
[4] Hochschild, G.: The Structure of Lie Groups. San Francisco: Holden Day 1965 · Zbl 0131.02702
[5] Hochschild, G., Mostow, G. D.: Representations and representative functions of Lie groups III. Ann. of Math.70, 85-100 (1959) · Zbl 0111.03201
[6] Matsushima, Y.: Expaces homogènes de Stein des groups de Lie complexes. Nagoya Math. J.16, 205-218 (1960) · Zbl 0094.28201
[7] Mostow, G. D.: Fully reducible subgroups of algebraic groups. Amer. J. Math.78, 200-221 (1965) · Zbl 0073.01603
[8] Richardson, R.: Principal orbit types for algebraic transformation spaces in characteristic zero. Inventiones math.16, 6-14 (1972) · Zbl 0242.14010
[9] Richardson, R.: Deformations of Lie subgroups and the variation of isotropy subgroups. Acta Math.129, 35-73 (1972) · Zbl 0242.22020
[10] Richardson, R.: The variation of isotropy subalgebras for analytic transformation groups. Math. Am.204, 83-92 (1973) · Zbl 0266.57011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.