×

A strongly nonlinear elliptic boundary value problem. (English) Zbl 0267.35039


MSC:

35J60 Nonlinear elliptic equations
35A05 General existence and uniqueness theorems (PDE) (MSC2000)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Agmon, S., Lectures on Elliptic Boundary Value Problems (1965), Van Nostrand: Van Nostrand Princeton, N. J, Princeton, N. J. · Zbl 0151.20203
[2] F. E. Browderin; F. E. Browderin · Zbl 0176.45301
[3] Browder, F. E., Existence theory for boundary value problems for quasi-linear elliptic systems with strongly nonlinear lower order terms, (Proceedings of the Symposium on Differential Equations. Proceedings of the Symposium on Differential Equations, Berkeley (1971), American Mathematical Society: American Mathematical Society Providence, R.I), to appear · Zbl 0117.07102
[4] Gossez, J.-P, Opérateurs monotones non linéaires dans les espaces de Banach non réflexifs, J. Math. Anal. Appl., 34, 371-395 (1971) · Zbl 0228.47040
[5] Hess, P., On nonlinear mappings of monotone type with respect to two Banach spaces, J. Math. Pures Appl., 52, 13-26 (1973) · Zbl 0222.47019
[6] P. HessJ. Math. Pures Appl.; P. HessJ. Math. Pures Appl. · Zbl 0222.47020
[7] Lions, J. L., Quelques Méthodes de Résolution des Problèmes aux Limites non Linéaires (1969), Dunod, Gauthier-Villars: Dunod, Gauthier-Villars Paris · Zbl 0189.40603
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.