×

zbMATH — the first resource for mathematics

Semi-linear Poisson’s equations. (English) Zbl 0267.47039

MSC:
47J05 Equations involving nonlinear operators (general)
35Q05 Euler-Poisson-Darboux equations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] V. Barbu: Continuous perturbations of nonlinear m-accretive operators in Banach spaces (preprint). · Zbl 0256.47053
[2] H. Brezis and A. Pazy: Convergence and approximation of semigroups of nonlinear operators in Banach spaces. J. Functional Analysis, 9, 63-74 (1972). · Zbl 0231.47036 · doi:10.1016/0022-1236(72)90014-6
[3] H. Brezis and W. A. Strauss: Semi-linear second-order elliptic equations in L J. Math. Soc. Japan (to appear). · Zbl 0278.35041 · doi:10.2969/jmsj/02540565
[4] M. G. Crandall and T. M. Liggett: Generation of semi-groups of nonlinear transformations on general Banach spaces. Amer. J. Math., 93, 265-298 (1971). JSTOR: · Zbl 0226.47038 · doi:10.2307/2373376 · links.jstor.org
[5] M. Hasegawa: On contraction semi-groups and (di)-operators. J. Math. Soc. Japan, 18, 290-302 (1966). · Zbl 0149.10301 · doi:10.2969/jmsj/01830290
[6] F. Hirsch: Operateurs codissipatifs et dissipatifs invariants par translations. C. R. Acad. Sc. Paris Serie A, 272, 231-233 (1971). · Zbl 0213.12303
[7] Y. Konishi: Nonlinear semi-groups in Banach lattices. Proc. Japan Acad., 47, 24-28 (1971). · Zbl 0219.47061 · doi:10.3792/pja/1195520103
[8] Y. Konishi: Some examples of nonlinear semi-groups in Banach lattices. J. Fac. Sci. Univ. Tokyo, Sect. IA, 18, 537-543 (1972). · Zbl 0239.47035
[9] Y. Konishi: Une remarque sur la perturbation d’operateurs m-accretifs dans un espace de Banach. Proc. Japan Acad., 48, 157-160 (1972). · Zbl 0249.47047 · doi:10.3792/pja/1195519722
[10] S. Oharu: Note on the representation of semi-groups of non-linear operators. Proc. Japan Acad., 42, 1149-1154 (1966). · Zbl 0148.38803 · doi:10.3792/pja/1195521763
[11] R. S. Phillips: Semi-groups of positive contraction operators. Czechoslovak Math. J., 12(87), 294-313 (1962). · Zbl 0113.09901 · eudml:12127
[12] K. Sato: On the generators of non-negative contraction semi-groups in Banach lattices. J. Math. Soc. Japan, 20, 423-436 (1968). · Zbl 0167.13601 · doi:10.2969/jmsj/02030423
[13] K. Sato: Potential operators for Markov processes. Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability, 3 (to appear). · Zbl 0276.60072
[14] K. Sato: A note on infinitesimal generators and potential operators of contraction semigroups. Proc. Japan Acad., 48, 450-453 (1972). · Zbl 0252.47037 · doi:10.3792/pja/1195519586
[15] T. Watanabe: Some recent results on processes with stationary independent increments. Second Japan-USSR Symposium on Probability Theory, Kyoto, 2, 93-110 (1972). · Zbl 0301.60051
[16] G. F. Webb: Continuous nonlinear perturbations of linear accretive operators in Banach spaces. J. Functional Analysis, 10, 191-203 (1972). · Zbl 0245.47052 · doi:10.1016/0022-1236(72)90048-1
[17] K. Yosida: The existence of the potential operator associated with an equicontinuous semigroup of class (Co). Studia Math., 31, 531-533 (1968). · Zbl 0218.60068 · eudml:217347
[18] K. Yosida: On the potential operators associated with Brownian motions. J. Analyse Math., 23, 461-465 (1970). · Zbl 0207.13903 · doi:10.1007/BF02795514
[19] K. Yosida: Functional Analysis. Springer, Berlin - Heidelberg - New York (1971). · Zbl 0126.11504
[20] K. Yosida: Abstract potential operators on Hilbert space. Publ. RIMS, Kyoto Univ., 8, 201-205 (1972). · Zbl 0243.31015 · doi:10.2977/prims/1195193232
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.