×

Zur schwachen Kompaktheit in Banachverbänden. (German) Zbl 0268.46010


MSC:

46A40 Ordered topological linear spaces, vector lattices
46B99 Normed linear spaces and Banach spaces; Banach lattices
PDFBibTeX XMLCite
Full Text: DOI EuDML

References:

[1] Ando, T.: Convergent sequences of finitely additive measures. Pacific J. Math.11, 395-404 (1961) · Zbl 0171.29903
[2] Day, M.M.: Normed linear spaces. Berlin-Heidelberg-New York: Springer 1962 · Zbl 0100.10802
[3] Dunford, N., Schwartz, J.T.: Linear operators I. New York: Interscience 1964 · Zbl 0084.10402
[4] Grothendieck, A.: Sur les applications linéaires faiblement compactes d’espaces du typeC(K). Canadian J. Math.5, 129-173 (1953) · Zbl 0050.10902 · doi:10.4153/CJM-1953-017-4
[5] Kakutani, S.: Concrete representations of abstract (L)-spaces and the mean ergodic theorem. Ann. of Math. Ser. II42, 523-537 (1941) · Zbl 0027.11102 · doi:10.2307/1968915
[6] Lozanovskii, G.Ja.: Some topological properties of Banach lattices and reflexivity conditions for them. Soviet. Math., Doklady9, 1415-1418 (1968) · Zbl 0189.42601
[7] Luxemburg, W.J.A., Zaanen, A.C.: Notes on Banach function spaces XII. Indagationes math.26, 104-119 (1964) · Zbl 0147.11001
[8] Luxemburg, W.J.A., Zaanen, A.C.: Notes on Banach function spaces XII. Indagationes math.26, 519-529 (1964) · Zbl 0147.11001
[9] Luxemburg, W.J.A.: Notes on Banach function spaces XIV A. Indagations math.27, 229-239 (1965) · Zbl 0147.11002
[10] Meyer-Nieberg, P.: Charakterisierung einiger topologischer und ordnungstheoretischer Eigenschaften von Banachverbänden mit Hilfe disjunkter Folgen. Arch. Math. (Erscheint demnächst) · Zbl 0275.46005
[11] Nagel, R.J.: Ordnungsstetigkeit in Banachverbänden. Manuscripta math.9, 9-27 (1973) · Zbl 0248.46010 · doi:10.1007/BF01320666
[12] Peressini, A.L.: Ordered topological vector spaces. New York-Evanston-London: Harper & Row 1967 · Zbl 0169.14801
[13] Schaefer, H.H.: Topological vector spaces. Berlin-Heidelberg-New York: Springer 1971 · Zbl 0212.14001
[14] Schaefer, H.H.: Weak convergence of measures. Math. Ann.193, 57-64 (1971) · doi:10.1007/BF02052855
[15] Schaefer, H.H.: On the representation of Banach lattices by continuous numerical functions. Math. Z.125, 215-232 (1972) · Zbl 0216.40702 · doi:10.1007/BF01111305
[16] Seever, G.L.: Measures onF-spaces. Trans. Amer. math. Soc.133, 267-280 (1968) · Zbl 0189.44902
[17] Tzafriri, L.: Reflexivity in Banach lattices and their subspaces. J. functional Analysis10, 1-18 (1972) · Zbl 0234.46013 · doi:10.1016/0022-1236(72)90054-7
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.