×

zbMATH — the first resource for mathematics

How a minimal surface leaves an obstacle. (English) Zbl 0268.49050

MSC:
49Q05 Minimal surfaces and optimization
53A10 Minimal surfaces in differential geometry, surfaces with prescribed mean curvature
35J99 Elliptic equations and elliptic systems
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Bers, L., John, F. &Schechter, M.,Partial Differential Equations. Interscience, New York, 1962.
[2] Caratheodory, C.,Conformal Representation. Cambridge University Press, London, 1932.
[3] Courant, R. &Hilbert, D.,Methods of Mathematical Physics, vol. II, Partial Differential Equations, Interscience, New York, 1962 (esp. p. 350). · Zbl 0099.29504
[4] Giaquinta, M. &Pepe, L., Esistenza e regolarit√† per il problema dell’area minima con ostacoli inn variabili.Ann. Scuola Norm, Sup. Pisa, 25 (1971), 481–506. · Zbl 0283.49032
[5] Hartman, P. &Wintner, A., On the local behavior of non parabolic partial differential equations.Amer. J. Math., 85 (1953), 449–476. · Zbl 0052.32201 · doi:10.2307/2372496
[6] Kinderlehrer, D., The coincidence set of solutions of certain variational inequalities.Arch. Rational Mech. Anal., 40 (1971), 231–250. · Zbl 0219.49014 · doi:10.1007/BF00281484
[7] Kinderlehrer, D., The regularity of the solution to a certain variational inequality.Proc. Symp. Pure and Appl. Math., 23 AMS, Providence RI. · Zbl 0273.35027
[8] Kinderlehrer, D., How a minimal surface leaves an obstacle. To appear inBull. Amer. Math. Soc., 78 (1972). · Zbl 0262.53003
[9] Lewy, H., On the boundary behavior of minimal surfaces.Proc. Nat. Acad. Sci. USA, 37 (1951), 103–110. · Zbl 0042.15702 · doi:10.1073/pnas.37.2.103
[10] – On minimal surfaces with partly free boundary.Comm. Pure Appl. Math., 4 (1951), 1–13. · doi:10.1002/cpa.3160040102
[11] Lewy, H. &Stampacchia, G., On the regularity of the solution to a variational inequality.Comm. Pure Appl. Math., 22 (1969), 153–188. · Zbl 0167.11501 · doi:10.1002/cpa.3160220203
[12] – On the existence and smoothness of solutions of some noncoercive variational inequalitiesArch. Rational Mech. Anal., 41 (1971), 141–253. · Zbl 0237.49005 · doi:10.1007/BF00250528
[13] Nitsche, J. C. C., The boundary behavior of minimal surfaces.Invent. Math., 8 (1969), 313–333. · Zbl 0195.23101 · doi:10.1007/BF01404636
[14] –, On new results in the theory of minimal surfaces.Bull. Amer. Math. Soc., 71 (1965) 195–270. · Zbl 0135.21701 · doi:10.1090/S0002-9904-1965-11276-9
[15] Rado, T.,On the problem of Plateau, Ergebnisse der Mathematik, Springer-Verlag, Berlin, 1933. · Zbl 0007.11804
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.