zbMATH — the first resource for mathematics

On the prolongations of differentiable distributions. (English) Zbl 0268.58002

58A30 Vector distributions (subbundles of the tangent bundles)
58A20 Jets in global analysis
58A25 Currents in global analysis
53C05 Connections (general theory)
Full Text: EuDML
[1] EHRESMANN C.: Sur les connexions d’ordre supérieur. Atti del V^\circ Congresso delľUnione Matematica Italiana, 1955, Roma Cremonese, 344 - 346.
[2] KOBAYASHI S., NOMIZU K.: Foundations of Differential Geometry I. New York London-Sydney 1963. · Zbl 0119.37502
[3] KOLÁŘ L.: On the torsion of spaces with connection. Czechoslovak Math. J., 21 (96), 1971, 124-136. · Zbl 0216.18501
[4] KOLÁŘ L.: Higher order torsions of spaces with Cartan connection. Cahiers Topologie Géom. Differentielle, 12, 1971, 137-146. · Zbl 0221.53039
[5] KOLÁŘ L.: Canonical forms on the prolongations of principle fibre bundles. Rev. math. pures et appl., 16, 1971, 1091-1106. · Zbl 0254.53012
[6] KOLÁŘ I.: On the prolongations of geometric object fields. An. Sti. Univ. ,,Al. I. Cuza” Iasi, 17, 1971, 437-446. · Zbl 0366.53037
[7] KOLÁŘ L.: On the invariant method in differential geometry of submanifolds. to appear.
[8] KOLÁŘ L.: On manifolds with connection. Czechoslovak Math. J., 23 (98), 1973, 34-44.
[9] KOLÁŘ L.: Higher order torsions of manifolds with connection. Arch. Math. (Brno), 8, 1972, 149-156.
[10] KOVANCOV M. L.: The geometry of manifolds which are immersed in a space wit\? a fundamental group connection. (Ukrainian), Visnik Kiiv. Univ., 9, 1967, 72-85.
[11] MIHAILESCU T.: Geometrie diferentiala proiectiva. Bucuresti 1958.
[12] ŠČERBAKOV R. N.: On the method of the framing of submanifolds. (Russian). Tr. Tomsk. Univ., 168, 1963, 5-11.
[13] ŠVEC A.: Cartan’s method of specialization of frames. Czechoslovak Math. J., 16 (91), 1966, 552-599. · Zbl 0156.20601
[14] Trudy geometričeskogo seminara. III, Moskva 1971.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.