×

zbMATH — the first resource for mathematics

Conformal martingales. (English) Zbl 0268.60048

MSC:
60J45 Probabilistic potential theory
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Burkholder, D. L.: Martingale transforms. Ann. Math. Stat.37, 6, 1494-1504 (1966). · Zbl 0306.60030 · doi:10.1214/aoms/1177699141
[2] Burkholder, D. L., Gundy, R. F.: Extrapolation and interpolation of quasi-linear operators on martingales. Acta Mathematica124, 249-304 (1970). · Zbl 0223.60021 · doi:10.1007/BF02394573
[3] Burkholder, D. L., Gundy, R. F., Silverstein, M.: A maximal function characterization ofH p . Trans. Amer. Math. Soc.157, 137-153 (1971). · Zbl 0223.30048
[4] Davis, B.: On the integrability of the martingale square function. Israel J. Math.8, 187-190 (1970). · Zbl 0211.21902 · doi:10.1007/BF02771313
[5] Doleans-Dade, C.: Quelques applications de la formule de changement des variables pour les semimartingales. Z. Wahrscheinlichkeitstheorie verw. Geb.16, 181-194 (1970). · Zbl 0201.19503 · doi:10.1007/BF00534595
[6] Doleans-Dade, C., Meyer, P. A.: Intégrales stochastiques par rapport aux maritingales locales. Séminaire de probabilités IV. Lecture Notes in Mathematics.124, Berlin-Heidelberg-New York: Springer 1970.
[7] Fefferman, C.: Characterizations of bounded mean oscillation. Bull. Amer. Math. Soc.77, 587-588 (1971). · Zbl 0229.46051 · doi:10.1090/S0002-9904-1971-12763-5
[8] John, F., Nirenberg, L.: On functions of bounded mean oscillation. Comm. Pure Appl. Math.14, 785-799 (1961). · Zbl 0106.08104 · doi:10.1002/cpa.3160140410
[9] Meyer, P. A.: Probabilities and potentials. Boston: Ginn (Blaisdell) 1966. · Zbl 0138.10401
[10] Meyer, P. A.: Intégrales stochastiques I, II. Séminaire de Probabilités I. Lecture Notes in Mathematics,39, Berlin-Heidelberg-New York: Springer 1967.
[11] Meyer, P. A.: Guide détaillé de la théorie “générale” des processus. Séminaire de Probabilités II. Lecture Notes in Mathematics51. Berlin-Heidelberg-New York: Springer 1968.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.