zbMATH — the first resource for mathematics

Théoremes limites pour les resolvantes recurrentes. (French) Zbl 0268.60067

60J35 Transition functions, generators and resolvents
60F15 Strong limit theorems
Full Text: DOI
[1] Akcoglu M. A.,An Ergodic lemma, Proc. Amer. Math. Soc., 16 (1965), pp. 388–392. · Zbl 0134.12103
[2] Azema J., Duflo M. et Revuz D.,Mesure invariante sur les classes récurrentes des processus de markov, Z. Wahrscheinlichkeitstheorie und verw Gebiete, 8 (1967), pp. 157–181. · Zbl 0178.20302
[3] Azema J., Duflo M. et Revuz D.,Mesure invariante des processus de Markov récurrents, Sém. Cal. Prob. Fac. Sci. Strasbourg, III (1968), Springer-Verlag, Lec. Notes in Math. 88, pp. 24–33.
[4] Baez-Duarte L.,An ergodic theorem of Abelian type, J. Math. and Mech., 15 (1966), pp. 599–607. · Zbl 0166.40404
[5] Blumenthal R. M. and Getoor R. K.,Markov processes and Potentiel Theory, New-York, Academic Press 1968. · Zbl 0169.49204
[6] Brunel A.,Sur un lemme ergodique voisin du lemme de Hopf et sur une de ses applications, C. R. Acad. Sci. Paris, 256 (1963), pp. 5481–5484. · Zbl 0117.10402
[7] Duflo M.,Opérateurs potentials des chaines et des processus irréductibles, Bull. Soc. Math. France, 98 (1970), pp. 127–164. · Zbl 0205.44803
[8] Edwards D. A.,On potentials and general ergodic theorems for resolvents, A paraître. · Zbl 0214.07202
[9] Meyer P. A.,Theorie ergodique et potentiels, Ann. Inst. Fourier, 15 (1965), pp. 89–102. · Zbl 0134.32402
[10] Neveu J.,Potential markovien récurrent des chaines de Harris, A paraître. · Zbl 0226.60084
[11] Revuz D.,Mesures associées aux fonctionnelles additives de Markov I et II, Tr. A. M. S., 148 (1970), pp. 501–531 et Z. Wahrscheinlichkeitstheorie und verw Gebiete, 16 (1970), pp. 336–344. · Zbl 0266.60053
[12] Rota G. C.,On the maximal ergodic theorem for Abel limits, Proc. Amer. Math. Soc., 14 (1963), pp. 722–723. · Zbl 0117.10501
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.