Primitive subsets of lattices. (English) Zbl 0269.06001


06B05 Structure theory of lattices
08B99 Varieties
Full Text: DOI


[1] K. A. Baker,Equational classes of modular lattices, Pacific J. Math.28 (1969), 9–15. · Zbl 0174.29802
[2] B. Jónsson,Algebras whose congruence lattices are distributive, Math. Scand.21 (1967), 110–121. · Zbl 0167.28401
[3] R. McKenzie,Equational bases for lattices theories, Math. Scand.27 (1970), 24–38. · Zbl 0307.08001
[4] R. McKenzie,Equational bases and non-modular lattice varieties, Trans. Amer. Math. Soc. · Zbl 0265.08006
[5] E. T. Schmidt,Kongruenzrelationen algebraischer Strukturen, Math. Forschungsber.25 (Berlin 1969).
[6] R. Wille,Variety invariants for modular lattices, Canad. J. Math.21 (1969), 279–283. · Zbl 0208.29102
[7] R. Wille,Primitive Länge und primitive Weite bei modularen Verbänden, Math. Zeitschr.108 (1969), 129–136. · Zbl 0169.32403
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.