×

The product of operators with closed range. (English) Zbl 0269.47002


MSC:

47A10 Spectrum, resolvent
46C05 Hilbert and pre-Hilbert spaces: geometry and topology (including spaces with semidefinite inner product)
Full Text: DOI

References:

[1] F. J. BEUTLER, The operator theory of the pseudo-inverse, I, J. Math. Anal. Appl., 10 (1965), 451-470. · Zbl 0151.19205 · doi:10.1016/0022-247X(65)90108-3
[2] F. J. BEUTLER, The operator theory of the pseudo-inverse, II, J. Math. Anal. Appl. 1 (1965), 471-493. · Zbl 0151.19205 · doi:10.1016/0022-247X(65)90108-3
[3] M. J. DIXMIER, Etude sur les varietes et les operaterus de Julia, avec quelques appli cations, Bull. Soc. Math. France 77 (1949), 11-101. · Zbl 0045.39102
[4] R. G. DOUGLAS, On majorization, factorization, and range inclusion of operators on Huber space, Proc. A. M. S. 17 (1966), 413-415. JSTOR: · Zbl 0146.12503 · doi:10.2307/2035178
[5] I. C. GOHBERG AND M. G. KREIN, The basic propositions on defect numbers, root numbers, and indices of linear operators, A. M. S. Translations 13 (1960), 185-264. · Zbl 0089.32201
[6] S. GOLDBERG, Unbounded Operators, Theory and Applications, McGraw-Hill Book Co., New York, 1966. · Zbl 0925.47001
[7] T. N. E. GREVILLE, The pseudo-inverse of a rectangular or singular matrix and its ap plication to the solution of systems of linear equations, Soc. Ind. Appl. Math., 1, (1959) 38-43. · Zbl 0123.11202 · doi:10.1137/1001003
[8] T. N. E. GREVILLE, Some applications of the pseudo-inverse of a matrix, Soc. Ind. Appl Math., 2 (1960), 15-22. JSTOR: · Zbl 0168.13303 · doi:10.1137/1002004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.