×

zbMATH — the first resource for mathematics

Foliations and spinnable structures on manifolds. (English) Zbl 0269.57012

MSC:
57R30 Foliations in differential topology; geometric theory
57R15 Specialized structures on manifolds (spin manifolds, framed manifolds, etc.)
57R65 Surgery and handlebodies
PDF BibTeX XML Cite
Full Text: DOI Numdam EuDML
References:
[1] N. A’CAMPO, Feuilletages de codimension 1 sur des variétés de dimension 5, C.R. Acad. Sci. Paris, 273 (1971), 603-604. · Zbl 0221.57009
[2] J. W. ALEXANDER, A lemma on systems of knotted curves, Proc. Nat. Acad. Sci., 9 (1923), 93-95. · JFM 49.0408.03
[3] A. H. DURFEE, Foliations of odd-dimensional spheres (to appear). · Zbl 0231.57016
[4] A. H. DURFEE and H. B. LAWSON, Fibered knots and foliations of highly connected manifolds (to appear). · Zbl 0231.57015
[5] K. FUKUI, Codimension 1 foliations on simply connected 5-manifolds (to appear). · Zbl 0271.57007
[6] A. HAEFLIGER, Structures feuilletées et cohomologie à valeur dans un faisceau de groupoïdes, Comm. Math. Helv., 32 (1958), 249-329. · Zbl 0085.17303
[7] H. B. LAWSON, Codimension-one foliations of spheres, Ann. of Math., 94 (1971), 494-503. · Zbl 0236.57014
[8] J. MILNOR and M. KERVAIRE, Groups of homotopy spheres I, Ann. of Math., 77 (1963), 504-537. · Zbl 0115.40505
[9] T. MIZUTANI, Remarks on codimension one foliations of spheres, J. Math. Soc. Japan, 24 (1972), 732-735. · Zbl 0238.57014
[10] G. REEB, Sur certaines propriétés topologiques des variétés feuilletées, Actualités Sci. Indust., No. 1183, Hermann, Paris, 1952. · Zbl 0049.12602
[11] S. SMALE, On the structure of manifolds, Amer. J. Math., 84 (1962), 387-399. · Zbl 0109.41103
[12] I. TAMURA, Every odd dimensional homotopy sphere has a foliation of codimension one, Comm. Math. Helv., 47 (1972), (voir Comm. Math.). · Zbl 0249.57013
[13] I. TAMURA, Spinnable structures on differentiable manifolds, Proc. Japan Acad., 48 (1972), 293-296. · Zbl 0252.57009
[14] H. E. WINKELNKEMPER, Manifolds as open books (to appear). · Zbl 0269.57011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.