×

zbMATH — the first resource for mathematics

Three characteristic classes measuring the obstruction to PL local unknottedness. (English) Zbl 0271.57005

MSC:
57R20 Characteristic classes and numbers in differential topology
57Q50 Microbundles and block bundles
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Sylvain E. Cappell and Julius L. Shaneson, Submanifolds, group actions and knots. I, II, Bull. Amer. Math. Soc. 78 (1972), 1045 – 1048; ibid. 78 (1972), 1049 – 1052. · Zbl 0263.57012
[2] Michel A. Kervaire, Les nœuds de dimensions supérieures, Bull. Soc. Math. France 93 (1965), 225 – 271 (French). · Zbl 0141.21201
[3] J. Levine, Invariants of knot cobordism, Invent. Math. 8 (1969), 98 – 110; addendum, ibid. 8 (1969), 355. · Zbl 0179.52401 · doi:10.1007/BF01404613 · doi.org
[4] C. P. Rourke and B. J. Sanderson, Block bundles. I, Ann. of Math. (2) 87 (1968), 1 – 28. , https://doi.org/10.2307/1970591 C. P. Rourke and B. J. Sanderson, Block bundles. II. Transversality, Ann. of Math. (2) 87 (1968), 256 – 278. · Zbl 0215.52301 · doi:10.2307/1970598 · doi.org
[5] D. Sullivan, Thesis, Princeton University, Princeton, N. J., 1966.
[6] D. Sullivan, Geometric topology, Princeton University, 1967 (mimeographed notes).
[7] J. Wagoner, Thesis, Princeton University, Princeton, N. J., 1966.
[8] C. T. C. Wall, Surgery on compact manifolds, Academic Press, London-New York, 1970. London Mathematical Society Monographs, No. 1. · Zbl 0219.57024
[9] C. T. C. Wall, Locally flat \?\? submanifolds with codimension two, Proc. Cambridge Philos. Soc. 63 (1967), 5 – 8. · Zbl 0166.19803
[10] Hiroshi Noguchi, Obstructions to locally flat embeddings of combinatorial manifolds, Topology 5 (1966), 203 – 213. · Zbl 0151.32601 · doi:10.1016/0040-9383(66)90020-6 · doi.org
[11] L. Jones, Combinatorial symmetries of D. III, Berkeley, California, 1971 (lecture notes).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.