zbMATH — the first resource for mathematics

Construction of basic functions for numerical utilisation of Ritz’s method. (English) Zbl 0271.65061

65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
Full Text: DOI EuDML
[1] Mikhlin, S. G.: Variational methods in mathematical physics. New York: Macmillan 1964. · Zbl 0119.19002
[2] Engeli, M., Th. Ginsburg, H. Rutishauser, andE. Stiefel: Refined iterative methods for computation of the solution and the eigenvalues of self-adjoint boundary value problems. Mitteilungen aus dem Institut für angewandte Mathematik, Nr. 8, Zürich, 1959 · Zbl 0089.12103
[3] Courant, R.: Variational methods for the solution of problems of equilibrium and vibrations. Bull. Amer. Math. Soc.49, 1–23 (1943). · Zbl 0063.00985 · doi:10.1090/S0002-9904-1943-07818-4
[4] Clough, R. W., andJ. L. Tocher: Finite element stiffness matrices for analysis of plates in bending. Proc. Conf. Matrix Methods in Struct. Mech., Air Force Inst. of Tech., Wright Patterson A.F. Base, Ohio, 1965.
[5] Zienkiewicz, O. C.: The finite element method in structural and continuum mechanics. New York: McGraw Hill 1967. · Zbl 0189.24902
[6] Ciarlet, P. G., M. H. Schultz, andR. S. Varga: Numerical methods of highorder accuracy for nonlinear boundary value problems. I. One dimensional problem. Numerische Mathematik9, 394–430 (1967). · Zbl 0155.20403 · doi:10.1007/BF02162155
[7] Schultz, M. H., andR. S. Varga:L-splines. Numerische Mathematik10, 345–369 (1967). · Zbl 0183.44402 · doi:10.1007/BF02162033
[8] Birkhoff, G., M. H. Schultz, andR. S. Varga: Piecewise Hermite interpolation in one and two variables with applications to partial differential equations. Numerische Mathematik11, 232–256 (1968). · Zbl 0159.20904 · doi:10.1007/BF02161845
[9] Goël, J.-J.: Utilisation numérique de la méthode de Ritz, application au calcul de plaque, thèse de doctorat. Ecole polytechnique de l’Université de Lausanne, 1968.
[10] - List of basic functions for numerical utilisation of Ritz’s method, application to the problem of the plate. Ecole polytechnique de l’Université de Lausanne, 1968.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.