On some operations on classes of algebras. (English) Zbl 0272.08006


08B99 Varieties
08Axx Algebraic structures
Full Text: DOI


[1] Birkhoff, G., Lattice theory, vi-vi (1967), New York: Amer. Math. Soc., New York · Zbl 0153.02501
[2] S. D. Comer and J. S. Johnson,The standard semigroup of operators of a variety, Alg. Univ. To appear. · Zbl 0266.08003
[3] Grätzer, G.; Lakser, H., The structure of pseudocomplemented distributive lattices II. Congruence extension and amalgamation, Transactions Amer. Math. Soc., 156, 343-358 (1971) · Zbl 0244.06011 · doi:10.2307/1995616
[4] Grätzer, G.; Lakser, H.; Płonka, J., Joins and direct products of equational classes, Canad. Math. Bull., 12, 741-744 (1969) · Zbl 0188.04903
[5] Henkin, L.; Monk, J. D.; Tarski, A., Cylindric algebras. Part I, vi-vi (1971), Amsterdam: North-Holland Publishing Co., Amsterdam
[6] Higgins, J. C., Subsemigroups of the additive positive integers, Fibonacci Quart., 10, 225-230 (1972) · Zbl 0239.20081
[7] Hu, T.-K.; Kelenson, P., Independence and direct factorization of universal algebras, Math. Nachr., 51, 83-99 (1971) · Zbl 0204.33104 · doi:10.1002/mana.19710510108
[8] Nemitz, W.; Whaley, T., Varieties of implicative semilattices, Pac. J. Math., 37, 759-769 (1971) · Zbl 0243.06003
[9] Neumann, B. H., Varieties of groups, Bull. Amer. Math. Soc., 73, 603-613 (1967) · Zbl 0149.26704 · doi:10.1090/S0002-9904-1967-11795-6
[10] Neumann, P. M., The inequality of SQPS and QSP as operators on classes of groups, Bull. Amer. Math. Soc., 76, 1067-1069 (1970) · Zbl 0209.32102 · doi:10.1090/S0002-9904-1970-12562-9
[11] Pigozzi, D., On some operations on classes of algebras, Notices Amer. Math. Soc., 13, 829-829 (1966)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.