×

zbMATH — the first resource for mathematics

The isogeny class of a CM-type abelian variety is defined over a finite extension of the prime field. (English) Zbl 0272.14009

MSC:
14K22 Complex multiplication and abelian varieties
14K15 Arithmetic ground fields for abelian varieties
14D05 Structure of families (Picard-Lefschetz, monodromy, etc.)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Deuring, M., Die typen der multiplikatorenringe elliptischer I unknonenkorper, (), 197-272 · JFM 67.0107.01
[2] Grothendieck, A.; Dieudonné, J., Eléments de geométrie algebrique, Publ. math. I.H.F.S. 20, 40, (1964), 1965, cited as EGA · Zbl 0203.23301
[3] Lang, S., Introduction to algebraic geometry, (1958), Interscience New York, reprint Addison-Wesley, Reading, Mass., 1972 · Zbl 0095.15301
[4] Lang, S., Abelian varieties, (1959), Interscience New York
[5] Lang, S.; Neron, A., Rational points of abelian varieties over function fields, Am. J. math., 81, 95-118, (1959) · Zbl 0099.16103
[6] Mumford, D., Geometric invariant theory, (1965), Springer Berlin · Zbl 0147.39304
[7] Mumford, D., Abelian varieties, Tata inst. F.R. stud. in math., 5, (1971), Oxford Univ. Press London · Zbl 0199.24601
[8] Manin, Yu.I., The theory of commutative formal groups over fields of finite characteristic, Russ. math. surv., 18, 1-80, (1963) · Zbl 0128.15603
[9] Oort, F., Commutative group schemes, Lecture notes in math., 15, (1966), Springer Berlin · Zbl 0216.05603
[10] Oort, F., Good and stable reduction of abelian varieties, Manuscripta math., 11, 171-197, (1974) · Zbl 0266.14016
[11] Serre, J.-P., Groupes algebriques et corps de classes, Actualités sci. indust., 1264, (1959) · Zbl 0097.35604
[12] Serre, J.-P.; Tate, J., Good reduction of abelian varieties, Ann. math., 88, 492-517, (1968) · Zbl 0172.46101
[13] Shimura, G.; Taniyama, Y., Complex multiplication of abelian varieties, Publ. math. soc. Japan, 6, (1961) · Zbl 0112.03502
[14] Shimura, G., Introduction to the arithmetic theory of automorphic functions, Publ. math. soc. Japan, 11, (1971), Iwanami Shoten Tokyo, and Princeton Univ. Press, Princeton, N.J. · Zbl 0221.10029
[15] Tate, J., Endomorphisms of abelian varieties over finite fields, Invent. math., 2, 134-144, (1966) · Zbl 0147.20303
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.