Subsequences of normal sequences. (English) Zbl 0272.28012


28D05 Measure-preserving transformations
11K06 General theory of distribution modulo \(1\)
Full Text: DOI


[1] L. M. Abramov,The entropy of the derived automorphism, Dokl. Akad. Nauk. SSSR128 (1959), 647–650. · Zbl 0094.10001
[2] P. Billingsley,Ergodic Theory and Information, John Wiley and Sons, New York, 1965. · Zbl 0141.16702
[3] H. Furstenberg,Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation, Math. Systems Theory 1–1 (1967), 1–49. · Zbl 0146.28502
[4] W. H. Gottschalk,Substitution minimal sets, Trans. Amer. Math. Soc.109 (1963), 467–491. · Zbl 0121.18002
[5] K. Jacobs and M. Keane,0–1 Sequences of Toeplitz type, Z. Wahrscheinlichkeitstheorie Verw. Gebiete13 (1969), 123–131. · Zbl 0195.52703
[6] Teturo Kamae,Spectrum of a substitution minimal set, J. Math. Soc. Japan22 (1970), 567–578. · Zbl 0197.49901
[7] Teturo Kamae,A topological invariant of substitution minimal sets, J. Math. Soc. Japan24 (1972), 285–306. · Zbl 0232.54052
[8] M. Keane,Generalized Morse sequences, Z. Wahrscheinlichkeitstheorie Verw. Gebiete10 (1968), 335–353. · Zbl 0162.07201
[9] J. C. Oxtoby,Ergodic sets, Bull. Amer. Math. Soc.58 (1961), 116–136. · Zbl 0046.11504
[10] J. C. Oxtoby,On two theorems of Parthasarathy and Kakutani concerning the shift transformation, Ergodic Theory, Fred B. Wright (ed.), Academic Press, New York, 1962. · Zbl 0147.34003
[11] K. R. Parthasarathy,Probability Measures on Metric Spaces, Academic Press, New York, 1967. · Zbl 0153.19101
[12] V. A. Rokhlin,New progress in the theory of transformations with invariant measure, Russian Math. Surveys15 (1960), 1–22. · Zbl 0102.33001
[13] H. Totoki,Introduction to Ergodic Theory, Kyoritsu Shuppan, Tokyo, 1971 (in Japanese).
[14] B. Weiss,Normal sequences as collectives, Proc. Symp. on Topological Dynamics and Ergodic Theory, Univ. of Kentucky, 1971.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.