Rabinowitz, Paul H. On bifurcation from infinity. (English) Zbl 0272.35017 J. Differ. Equations 14, 462-475 (1973). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 7 ReviewsCited in 138 Documents MSC: 35B99 Qualitative properties of solutions to partial differential equations 35G20 Nonlinear higher-order PDEs × Cite Format Result Cite Review PDF Full Text: DOI References: [1] Keller, J. B.; Antman, S., Bifurcation Theory and Nonlinear Eigenvalue Problems (1969), Benjamin: Benjamin New York, (editors) · Zbl 0181.00105 [2] Krasnoselski, M. A., Topological Methods in the Theory of Nonlinear Integral Equations (1965), Macmillan: Macmillan New York [3] Rabinowitz, P. H., Some global results for nonlinear eigenvalue problems, J. Functional Anal., 7, 487-513 (1971) · Zbl 0212.16504 [4] C. A. Stuart; C. A. Stuart · Zbl 0257.34021 [5] Rabinowitz, P. H., A global theorem for nonlinear eigenvalue problems and applications, (Zarantonello, E. H., Contributions to Nonlinear Functional Analysis (1971), Academic Press: Academic Press New York), 11-36 · Zbl 0271.47020 [6] Rabinowitz, P. H., Nonlinear Sturm-Liouville eigenvalue problems for second order ordinary differential equations, Comm. Pure Appl. Math., 23, 939-962 (1970) · Zbl 0206.09706 [7] Coddington, E. A.; Levinson, N., Theory of Ordinary Differential Equations (1955), McGraw-Hill: McGraw-Hill New York · Zbl 0042.32602 [8] Agmon, S.; Douglis, A.; Nirenberg, L., Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions, I, Comm. Pure Appl. Math., 12, 623-727 (1959) · Zbl 0093.10401 [9] Agmon, S., The \(L_p\) approach to the Dirichlet problem, Ann. Sc. Norm. Sup. Pisa, 13, 405-446 (1959), (3) · Zbl 0093.10601 [10] Nirenberg, L., On elliptic partial differential equations, Ann. Sc. Norm. Sup. Pisa, 13, 115-162 (1959), (3) · Zbl 0088.07601 [11] Courant, R.; Hilbert, D., (Methods of Mathematical Physics, Vol. II (1962), Interscience: Interscience New York) · Zbl 0729.00007 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.