On Mackey convergence in locally convex spaces. (English) Zbl 0272.46002


46A03 General theory of locally convex spaces
46A08 Barrelled spaces, bornological spaces
Full Text: DOI


[1] H. Hogbé-Nlend,Techniques de bornologies en théorie des espaces vectoriels topologiques, Lecture Notes331 (1973), 84–162.
[2] J. Horváth,Topological vector spaces and distributions I, Addison-Wesley, Reading, Massachusetts, 1966.
[3] H. Jarchow,Duale Charakterisierungen der Schwartz-Räume, Math. Ann.196 (1972), 85–90. · Zbl 0225.46007
[4] H. Jarehow,Die Universalität des Räumes c 0 für die Klasse der Schwartz-Räume, Math. Ann.203 (1973), 211–214. · Zbl 0249.46019
[5] G. Köthe,Topologische lineare Räume I, 2. Aufl. Springer, Berlin-Heidelberg-New York, 1966. · Zbl 0137.31301
[6] D. Randtke,A simple example of a universal Schwartz space, Proc. Amer. Math. Soc.37, (1973), 185–188. · Zbl 0251.46005
[7] T. Terzioĝlu,On Schwartz spaces, Math. Ann.182 (1969), 236–242. · Zbl 0179.45501
[8] M. De Wilde,Réseaux dans les espaces linéaires à semi-normes, Mém. Soc. Roy. Sci. Liège (5)XVIII (1969), 2.
[9] M. De Wilde,Ultrabornological spaces and the closed graph theorem, Bull. Soc. Roy. Sci. Liège40 (1971), 116–118. · Zbl 0216.40603
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.