×

Reproducing kernel Hilbert spaces and the law of the iterated logarithm for Gaussian processes. (English) Zbl 0272.60024


MSC:

60G15 Gaussian processes
60F15 Strong limit theorems
Full Text: DOI

References:

[1] Aronszain, N., The theory of reproducing kernels, Trans. Amer. Math. Soc., 68, 337-404 (1950) · Zbl 0037.20701
[2] Fernique, X., Continuité des processus Gaussiens, C. R. Acad. Sci. Paris, 258, 6058-6060 (1964) · Zbl 0129.30101
[3] Kiefer, J., On the deviations in the Skorokhod-Strassen approximation scheme, Z. Wahrscheinlichkeitstheorie verw. Gebiete, 13, 321-332 (1969) · Zbl 0176.48201
[4] Kiefer, J., Skorohod embedding of multivariate random variables and the sample distribution function, Z. Wahrscheinlichkeitstheorie verw. Gebiete, 24, 1-35 (1972) · Zbl 0267.60034
[5] Lai, T.L.: Gaussian processes, moving averages and quick detection problems. To appear in Ann. Probab. 1 1973 · Zbl 0294.60028
[6] Lai, T.L.: On Strassen-type laws of the iterated logarithm for delayed averages of the Wiener process. To appear in Bull. Inst. Math., Acad. Sinica 1 1973. · Zbl 0261.60030
[7] Nisio, M., On the extreme values of Gaussian processes, Osaka J. Math., 4, 313-326 (1967) · Zbl 0178.19904
[8] Oodaira, H., On Strassen’s version of the law of the iterated logarithm for Gaussian processes, Z. Wahrscheinlichkeitstheorie verw. Gebiete, 21, 289-299 (1972) · Zbl 0214.17502
[9] Prohorov, Y. V.; Rozanov, Y. A., Probability Theory (1969), Berlin-Heidelberg-New York: Springer, Berlin-Heidelberg-New York · Zbl 0186.49701
[10] Strassen, V., An invariance principle for the law of the iterated logarithm, Z. Wahrscheinlichkeitstheorie verw. Gebiete, 3, 211-226 (1964) · Zbl 0132.12903
[11] Marcus, M., A bound for the distribution of the maximum of continuous Gaussian processes, Ann. Math. Statist., 41, 305-309 (1970) · Zbl 0234.60054
[12] Mueller, D. W., On Glivenko-Cantelli convergence, Z. Wahrscheinlichkeitstheorie verw. Gebiete, 16, 195-210 (1970) · Zbl 0193.46502
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.