New error bounds for the penalty method and extrapolation. (English) Zbl 0272.65092


65N15 Error bounds for boundary value problems involving PDEs
Full Text: DOI EuDML


[1] Aubin, J. P.: Approximation des problèms aux limites non homogenes et régularité de la convergence, Calcolo6, 117-139 (1969) · Zbl 0201.12601 · doi:10.1007/BF02576128
[2] Babu?ka, I.: Numerical solution of boundary value problems by the perturbed variational principle, Tech. Note BN-624, 1969, Institute for Fluid Dynamics and Applied mathematics, University of Maryland
[3] Babu?ka, I.: The finite element method with penalty, Math. Comp.27, 221-228 (1973) · Zbl 0299.65057
[4] Babu?ka, I.: Approximations by hill functions, Comment. Math. Univ. Carolinae11, 787-811 (1970) · Zbl 0215.46404
[5] Bandle, C., Sperb, R. P.: Applications of Rellich’s perturbation theory to a classical boundary and eigenvalue problem, ZAMP24, 709-720 (1973) · Zbl 0278.35069 · doi:10.1007/BF01597075
[6] Bramble, J. H., Hilbert, S.: Estimation of linear functionals on Sobolev spaces with applications to Fourier transforms and spline interpolation, SIAM Num. Anal.7, 112-124 (1970) · Zbl 0201.07803 · doi:10.1137/0707006
[7] Bramble, J. H., Nitsche, J.: A generalized Ritz-least-squares method for Dirichlet problems, SIAM Num. Anal.10, 81-93 (1973) · Zbl 0287.65056 · doi:10.1137/0710010
[8] Bramble, J. H., Schatz, A. H.: Raleigh-Ritz-Galerkin methods for Dirichlet’s problem using subspaces without boundary conditions, Comm. Pure Appl. Math.23, 653-675 (1970) · Zbl 0204.11102 · doi:10.1002/cpa.3160230408
[9] Bramble, J. H., Schatz, A. H.: Least-squares methods for 2m th order elliptic boundary value problems, Math. Comp.25, 1-33 (1970) · Zbl 0216.49202
[10] Bramble, J. H., Schatz, A. H.: Some maximum norm estimates for finite element approximations to elliptic boundary value problems, Proceedings of the symposium on mathematical aspects of finite elements in partial differential equations, Academic Press (C. de Boor, editor), to appear
[11] Bramble, J. H., Thomée, V.: Semidiscrete least-squares methods for a parabolic boundary value problem, Math. Comp.26, 633-648 (1972) · Zbl 0268.65060
[12] Bramble, J. H., Zlàmal, M.: Triangular elements in the finite element method, Math. Comp.24, 809-820 (1970) · Zbl 0226.65073 · doi:10.1090/S0025-5718-1970-0282540-0
[13] Courant, R.: Variational methods for the solution of problems of equilibrium and vibrations, Bull. Amer. Math. Soc.49, 1-23 (1943) · Zbl 0063.00985 · doi:10.1090/S0002-9904-1943-07818-4
[14] Dendy, J. E.: Penalty Galerkin methods for partial differential equations, Ph.D. thesis, Rice Univ., 1971 · Zbl 0293.65084
[15] Lions, J. L., Magenes, E.: Problèmes aux limites non homogènes et applications, vol. 1, Dunod, Paris, 1968 · Zbl 0165.10801
[16] Nitsche, J.: Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind, Abh. Math. Sem. Univ. Hamburg36, 9-15 (1970/71) · Zbl 0229.65079 · doi:10.1007/BF02995904
[17] Nitsche, J.: On Dirichlet problems using subspaces with nearly zero boundary conditions, The mathematical foundations of the finite element method with applications to partial differential equations. New York: Academic Press 1972, (A. K. Aziz, editor), pp. 603-627
[18] Nitsche, J. A., Schatz, A.: Interior estimates for Ritz-Galerkin methods, preprint · Zbl 0298.65071
[19] Ortega, J. M.: Numerical Analysis: A Second Course. New York: Academic Press 1972 · Zbl 0248.65001
[20] Serbin, S.: A computational investigation of least squares and other projection methods for the approximate solution of boundary value problems, Ph. D. thesis, Cornell University 1971
[21] Schultz, M. H.: Multivariate spline functions and elliptic problems, SIAM, Num. Anal.6, 523-538 (1969) · Zbl 0211.19302 · doi:10.1137/0706047
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.