×

zbMATH — the first resource for mathematics

Optimalite dans un système multicritere et perturbe avec application à des systèmes de commande linéaires à couts quadratiques. (French) Zbl 0272.90072

MSC:
90C30 Nonlinear programming
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] A. W. STARR et Y. C. HO, Nonzero-Sum Differential Games, JOTA, 1969, 3, 184-206. Zbl0169.12301 MR249117 · Zbl 0169.12301 · doi:10.1007/BF00929443
[2] A. W. STARR et Y. C. HO, Further Properties of Nonzero-Sum Differential Games, JOTA, 1969, 3, 207-219. Zbl0169.12303 MR249118 · Zbl 0169.12303 · doi:10.1007/BF00926523
[3] T. L. VINCENT et G. LEITMANN, Control Space Properties of cooperative games, JOTA, 1970, 4, 91-113. Zbl0185.24002 MR270762 · Zbl 0185.24002 · doi:10.1007/BF00927045
[4] A. BLAQUIERE, Sur la géométrie des surfaces de Pareto d’un jeu différentiel à N joueurs, C. R. Acad. Sc. Paris, sér. A, 1970, 271, 744-747. Zbl0262.90078 MR269321 · Zbl 0262.90078
[5] A. BLAQUIERE, L. JURICEK et K. E. WIESE, Sur la géométrie des surfaces de Pareto d’un jeu différentiel à N joueurs : théorème du maximum, C. R. Acad. Sc. Paris, sér. A, 1970, 271, 1030-1032. Zbl0262.90079 MR272418 · Zbl 0262.90079
[6] A. HAURIE, Jeux quantitatifs à M joueurs, doctoral dissertation, Paris, 1970.
[7] M. C. DELFOUR et S. K. MITTER, Reachability of Perturbed Linear Systems and Min Sup Problems, SIAM J. on Control, 1969, 7, 521-533. Zbl0195.16204 MR265045 · Zbl 0195.16204 · doi:10.1137/0307038
[8] D. P. BERTSEKAS et I. B. RHODES, On the Minimax Reachability of Targets and Target Tubes, Automatica, 1971, 7, 233-247. Zbl0215.21801 MR322648 · Zbl 0215.21801 · doi:10.1016/0005-1098(71)90066-5
[9] J. D. GLOVER et F. C. SCHWEPPE, Control of Linear Dynamic Systems with Set Constrained Disturbances, IEEE Trans. on Control, AC-16, 1971, 411-423. MR287947
[10] A. BLAQUIERE et K. E. WIESE, Jeux qualitatifs multi-étages à N personnes ; coalitions, C. R. Acad. Sc. Paris, sér. A, 1970, 270, 1280-1282. Zbl0212.25104 MR289149 · Zbl 0212.25104
[11] R. J. AUMANN, A Survey of Cooperative Games without side Payments, in Essays in Mathematical Economics, ed. M. Shubik, Princeton, 1969.
[12] W. F. LUCAS, Some Recent Developments in n-Person Game Theory, SIAM Review, 1971, 13, 491-523. Zbl0229.90055 MR381719 · Zbl 0229.90055 · doi:10.1137/1013093
[13] H. SCARF, The Core of a n-Person Game, Econometrica No 35, 1967, pp. 50-69. Zbl0183.24003 MR234735 · Zbl 0183.24003 · doi:10.2307/1909383
[14] H. SCARF, On the Eexistence of a Cooperative Solution for a General class of n-Person Games, Journal of Economic Theory No 3, 1971, pp. 169-181. MR449732
[15] A. HAURIE et M. DELFOUR, Individual and Collective Rationality in a Dynamic Pareto Equilibrium, to appear in J.O.T.A. Zbl0258.90055 MR359839 · Zbl 0258.90055 · doi:10.1007/BF00934866
[16] A. HAURIE, On Pareto Optimal Decisions for a Coalition of a Subset of Players, IEEE Transactions on Automatic Control, avril 1973. Zbl0266.90066 MR479433 · Zbl 0266.90066 · doi:10.1109/TAC.1973.1100264
[17] E. B. LEE et L. MARKUS, Foundations of Optimal Control Theory, J. Wiley, 1967. Zbl0159.13201 MR220537 · Zbl 0159.13201
[18] A. HAURIE et J. L. GOFFIN, Optimality for a Multicriterion perturbed System, short paper 1972 Allerton’s conference on Circuit and System Theory.
[19] J. L. GOFFIN et A. HAURIE, Necessary Conditions and Sufficient conditions for Pareto Optimality in a Multicriterion Perturbed System, 5th IFIP Conference, On Optimization Techniques, Rome, mai 1973. Zbl0287.90022 MR452735 · Zbl 0287.90022
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.