A generalization of the propositional calculus for purposes of the theory of logical nets with probabilistic elements. (English) Zbl 0273.02008


94C10 Switching theory, application of Boolean algebra; Boolean functions (MSC2010)
03B05 Classical propositional logic
68Q45 Formal languages and automata
Full Text: EuDML


[1] T. L. Booth: Sequential machines and automata theory. Wiley, London 1967. · Zbl 0165.02303
[2] A. W. Burks J. B. Wright: Theory of logical nets. Proceedings of I.R.E. 41 (1953), 10, 1357-1365. · Zbl 0148.25305
[3] A. Grzegorczyk: Outline of mathematical logic. (in Polish). 2nd, PWN, Warszawa 1969. · Zbl 0246.02001
[4] R. Knast: On some possibility of the structural synthesis of a probabilistic automaton. (in Polish). Prace Komisji budowy maszyn i elektrotechniki, torn 1.5, Poznań 1967.
[5] N. E. Kobrinskij B. A. Trachtenbrot: Introduction to the theory of finite automata. North Holland, Amsterdam 1965. · Zbl 0128.01401
[6] V. I. Levin: Probabilistic analysis of unreliable automata. (in Russian). Zinatne, Riga 1969.
[7] D. A. Pospelov: Probabilistic automata. (in Russian). Energiya, Moskva 1970.
[8] M. O. Rabin: Probabilistic automata. Information and control 6 (1963), 3, 230-245. · Zbl 0182.33602
[9] T. Havránek: On a probabilistic extension of propositional calculus. (in Czech). Acta universitatis Carolinae, ser. Logica 1 · Zbl 0553.62055
[10] T. Havránek: A probabilistic extension of propositional calculus for purposes of structural theory of stochastical automata. (in Czech). Theses on the Department of Mathematical Statistic, Charles University, Prague 1972.
[11] T. Havránek: The computation of characteristic vectors of LP-expressions. To appear in Kybernetika. · Zbl 0216.24103
[12] T. Havránek: The application of logical-probabilistic expressions to the realization of stochastical automata. To appear in Kybernetika. · Zbl 0216.24103
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.