Hagemann, J.; Mitschke, A. On \(n\)-permutable congruences. (English) Zbl 0273.08001 Algebra Univers. 3, 8-12 (1973). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 1 ReviewCited in 80 Documents MSC: 08A05 Structure theory of algebraic structures × Cite Format Result Cite Review PDF Full Text: DOI References: [1] Bosbach, B., Komplementäre Halbgruppen Axiomatik und Arithmetik, Fund. Math., 64, 257-287 (1969) · Zbl 0183.30603 [2] Grötzer, G., Two Mal’cev type theorems in universal algebra, J. Comb. Theory, 8, 334-342 (1970) · Zbl 0194.01401 · doi:10.1016/S0021-9800(70)80086-2 [3] J. Hagemann,Grundlagen der allgemeinen topologischen Algebra, in preparation. [4] Mitschke, A., Implication algebras are 3-permutable and 3-distributive, Algebra Universalis, 1, 182-186 (1971) · Zbl 0242.08005 · doi:10.1007/BF02944976 [5] E. T. Schmidt,Kongruenzrelationen algebraischer Strukturen, Math. Forschungsberichte 25, Berlin, 1969. · Zbl 0198.33301 [6] E. T. Schmidt,On n-permutable equational classes, to appear in Acta Math. Hungaricae. · Zbl 0253.08002 [7] H. Werner,A Mal’cev condition for admissible relations, mimeographed note. · Zbl 0276.08004 [8] R. Wille,Kongruenzklassengeometrien, Lecture Notes in Mathematics113 (1970). Springer-Verlag. This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.